Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35806527

RESUMEN

The local structure of the filled tetragonal tungsten bronze (TTB) niobate Ba3Nb5-xTixO15 (x = 0, 0.1, 0.7, 1.0), showing a metal-insulator transition with Ti substitution, has been studied by Nb K-edge extended X-ray absorption fine structure (EXAFS) measurements as a function of temperature. The Ti substitution has been found to have a substantial effect on the local structure, that remains largely temperature independent in the studied temperature range of 80-400 K. The Nb-O bonds distribution shows an increased octahedral distortion induced by Ti substitution, while Nb-Ba distances are marginally affected. The Nb-O bonds are stiffer in the Ti substituted samples, which is revealed by the temperature dependent mean square relative displacements (MSRDs). Furthermore, there is an overall increase in the configurational disorder while the system with Nb 4d electrons turns insulating. The results underline a clear relationship between the local structure and the electronic transport properties suggesting that the metal-insulator transition and possible thermoelectric properties of TTB structured niobates can be tuned by disorder.

2.
Phys Chem Chem Phys ; 22(39): 22217-22225, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32996510

RESUMEN

We have studied the local structure of layered Eu(La,Ce)FBiS2 compounds by Bi L3-edge extended X-ray absorption fine structure (EXAFS) measurements as a function of temperature. We find that the BiS2 sub-lattice is largely distorted in EuFBiS2, characterized by two different in-plane Bi-S1 distances. The distortion is marginally affected by partial substitutions of Ce (Eu0.5Ce0.5FBiS2) and La (Eu0.5La0.5FBiS2). The temperature dependence of the local structure distortion reveals an indication of possible charge density wave like instability in the pristine self-doped EuFBiS2 and Ce substituted Eu0.5Ce0.5FBiS2 while it is suppressed in La substituted Eu0.5La0.5FBiS2. In compounds with higher superconducting transition temperature, the axial Bi-S2 bond distance is elongated and the related bond stiffness decreased, suggesting some important role of this in the charge transfer mechanism for self-doping in the active BiS2-layer. In-plane Bi-S1 distances are generally softer than the axial Bi-S2 distance and they suffer further softening by the substitutions. The results are discussed in relation to an important role of the Bi defect chemistry driven asymmetric local environment in the physical properties of these materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...