Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 29(32): 325601, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-29761791

RESUMEN

Carbon nano-onions (CNOs), in their spherical or polyhedral forms, represent an important class of nanomaterials, due to their peculiar physical and electrochemical properties. Among the different methods of production, arc discharge between graphite electrodes sustained by deionized water is one of the most promising to obtain good quality CNOs in gram quantities. We applied the method with the aim to optimize the production of CNOs, using an innovative experimental arrangement. The discharges generate dispersed nanomaterials and a black hard cathodic deposit, which were studied by transmission electron microscopy-high-resolution TEM, scanning electron microscopy, Raman, thermogravimetric analysis and energy-dispersive x-ray spectroscopy. A simple mechanical grinding of the deposits permitted us to obtain turbostratic polyhedral CNOs that exhibited higher stability towards burning in air, compared to CNOs found in water. We propose a mechanism for the formation of the CNOs present in the deposit, in which the crystallization is driven by a strong temperature gradient existing close to the cathode surface at the beginning of the process, and subsequently close to the deposit surface whenever it is growing.

2.
J Nanosci Nanotechnol ; 18(4): 3006-3011, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442987

RESUMEN

We present a study of adsorption of Cresyl Violet (CV) in aqueous solution on sonicated Graphite Oxide (sGO). For comparison, we also show adsorption results of Methylene Blue (MB) and Acridine Orange (AO) performed in the same conditions. The adsorbent was synthesized by the Tour's method followed by washing in water and ethanol and sonication, without any reduction, and studied by Raman, IR, UV-Vis, SEM and TEM techniques. Our results show that adsorption fits the pseudosecond order model for the three dyes, and that the adsorption quantity for CV is 125.0 mg g-1, while for MB and AO is 123.3 and 94.6 mg g-1 respectively.

3.
Sci Rep ; 7(1): 3445, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28611385

RESUMEN

We have investigated the electronic response of single crystals of indium selenide by means of angle-resolved photoemission spectroscopy, electron energy loss spectroscopy and density functional theory. The loss spectrum of indium selenide shows the direct free exciton at ~1.3 eV and several other peaks, which do not exhibit dispersion with the momentum. The joint analysis of the experimental band structure and the density of states indicates that spectral features in the loss function are strictly related to single-particle transitions. These excitations cannot be considered as fully coherent plasmons and they are damped even in the optical limit, i.e. for small momenta. The comparison of the calculated symmetry-projected density of states with electron energy loss spectra enables the assignment of the spectral features to transitions between specific electronic states. Furthermore, the effects of ambient gases on the band structure and on the loss function have been probed.

4.
J Phys Condens Matter ; 25(11): 115301, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23399885

RESUMEN

Core-hole induced electron excitations in fullerene molecules, and small-diameter conducting carbon nanotubes, are studied using density functional theory with minimal, split-valence, and triply-split-valence basis sets plus the generalized gradient approximation by Perdew-Burke-Ernzerhof for exchange and correlation. Finite-size computations are performed on the carbon atoms of a C(60) Bucky ball and a piece of (3, 3) armchair cylindrical network, terminated by hydrogen atoms, while periodically boundary conditions are imposed on a (3, 3) nanotube unit cell. Sudden creation of the core state is simulated by replacing a 1s electron pair, localized at a central site of the structures, with the effective pseudo-potentials of both neutral and ionized atomic carbon. Excited states are obtained from the ground-state (occupied and empty) electronic structure of the ionized systems, and their overlaps with the ground state of the neutral systems are computed. These overlaps enter Fermi's golden rule, which is corrected with lifetime and finite-temperature effects to simulate the many-electron response of the nanoobjects. A model based on the linked cluster expansion of the vacuum persistence amplitude of the neutral systems, in a parametric core-hole perturbation, is developed and found to be reasonably consistent with the density functional theory method. The simulated spectrum of the fullerene molecule is found to be in good agreement with x-ray photoemission experiments on thick C(60) films, reproducing the low energy satellites at excitation energies below 4 eV within a peak position error of ca. 0.3 eV. The nanotube spectra show some common features within the same experiments and describe well the measured x-ray photoelectron lineshape from nanotube bundles with an average diameter of 1.2 nm.

5.
J Nanosci Nanotechnol ; 11(10): 9256-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22400333

RESUMEN

We report on kinetic energy distributions of electrons emitted during bombardment of graphene adsorbed on a Ni(111) surface by 0.5-0.9 keV electrons. The spectra reveal several peaks superimposed on the background of cascade electrons. The position of these peaks does not depend significantly on primary electron energy but show a remarkable angular dependence, indicating that they are directly related to the empty bands above the vacuum level of the sample.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...