Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
J. venom. anim. toxins incl. trop. dis ; 24: 1-20, 2018. ilus, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1484754

RESUMEN

Background: Autologous whole blood (AWB) administration is described as alternative/complementary medical practice widely employed in medical and veterinary therapy against infections, chronic pathologies and neoplasias. Our aim is to investigate in vivo biological effect of AWB using healthy murine models under the course of Trypanosoma cruzi acute infection. Methods: The first set of studies consisted of injecting different volumes of AWB and saline (SAL) into the posterior region of quadriceps muscle of healthy male Swiss mice under distinct therapeutic schemes evaluating: animal behavior, body and organ weight, hemogram, plasmatic biochemical markers for tissue damage and inflammatory cytokine levels and profile. To assess the impact on the experimental T. cruzi infection, different schemes (prior and post infection) and periods of AWB administration (from one up to 10 days) were conducted, also employing heterologous whole blood (HWB) and evaluating plasma cytokine profile. Results: No major adverse events were observed in healthy AWB-treated mice, except gait impairment in animals that received three doses of 20 L AWB in the same hind limb. AWB and SAL triggered an immediate polymorphonuclear response followed by mononuclear infiltrate. Although SAL triggered an inflammatory response, the kinetics and intensity of the histological profile and humoral mediator levels were different from AWB, the latter occurring earlier and more intensely with concomitant elevation of plasma IL-6. Inflammatory peak response of SAL, mainly composed of mononuclear cells with IL-10, was increased at 24 h. According to the mouse model of acute T. cruzi infection, only minor decreases ( 30%) in the parasitemia levels were produced by AWB and HWB given before and after infection, without protecting against mortality. Rises in IFN-gamma, TNF-alpha and...


Asunto(s)
Animales , Ratones , Autoantígenos/uso terapéutico , Transfusión de Sangre Autóloga , Trypanosoma cruzi
2.
J. venom. anim. toxins incl. trop. dis ; 24: 25, 2018. graf, ilus
Artículo en Inglés | LILACS | ID: biblio-954850

RESUMEN

Autologous whole blood (AWB) administration is described as alternative/complementary medical practice widely employed in medical and veterinary therapy against infections, chronic pathologies and neoplasias. Our aim is to investigate in vivo biological effect of AWB using healthy murine models under the course of Trypanosoma cruzi acute infection. Methods: The first set of studies consisted of injecting different volumes of AWB and saline (SAL) into the posterior region of quadriceps muscle of healthy male Swiss mice under distinct therapeutic schemes evaluating: animal behavior, body and organ weight, hemogram, plasmatic biochemical markers for tissue damage and inflammatory cytokine levels and profile. To assess the impact on the experimental T. cruzi infection, different schemes (prior and post infection) and periods of AWB administration (from one up to 10 days) were conducted, also employing heterologous whole blood (HWB) and evaluating plasma cytokine profile. Results: No major adverse events were observed in healthy AWB-treated mice, except gait impairment in animals that received three doses of 20 µL AWB in the same hind limb. AWB and SAL triggered an immediate polymorphonuclear response followed by mononuclear infiltrate. Although SAL triggered an inflammatory response, the kinetics and intensity of the histological profile and humoral mediator levels were different from AWB, the latter occurring earlier and more intensely with concomitant elevation of plasma IL-6. Inflammatory peak response of SAL, mainly composed of mononuclear cells with IL-10, was increased at 24 h. According to the mouse model of acute T. cruzi infection, only minor decreases (< 30%) in the parasitemia levels were produced by AWB and HWB given before and after infection, without protecting against mortality. Rises in IFN-gamma, TNF-alpha and IL-6 were detected at 9 dpi in all infected animals as compared to uninfected mice but only Bz displayed a statistically significant diminution (p= 0.02) in TNF-alpha levels than infected and untreated mice. Conclusions: This study revealed that the use of autologous whole blood (AWB) in the acute model employed was unable to reduce the parasitic load of infected mice, providing only a minor decrease in parasitemia levels (up to 30%) but without protecting against animal mortality. Further in vivo studies will be necessary to elucidate the effective impact of this procedure.(AU)


Asunto(s)
Animales , Masculino , Ratas , Trypanosoma cruzi , Transfusión de Sangre Autóloga , Enfermedad de Chagas/sangre , Terapias Complementarias
3.
PLoS Negl Trop Dis ; 9(9): e0004064, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26371874

RESUMEN

The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system.


Asunto(s)
Vacuna contra la Fiebre Amarilla , Virus de la Fiebre Amarilla/crecimiento & desarrollo , Estructuras Animales/virología , Animales , Embrión de Pollo , Histocitoquímica , Vacunas Atenuadas , Replicación Viral
4.
PLoS One ; 9(3): e90975, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24621665

RESUMEN

The use of avian animal models has contributed to the understanding of many aspects of the ontogeny of the hematopoietic system in vertebrates. However, specific events that occur in the model itself are still unclear. There is a lack of consensus, among previous studies, about which is the intermediate site responsible for expansion and differentiation of hematopoietic cells, and the liver's contribution to the development of this system. Here we aimed to evaluate the presence of hematopoiesis in the yolk sac and liver in chickens, from the stages of intra-aortic clusters in the aorta-genital ridges-mesonephros (AGM) region until hatching, and how it relates to the establishment of the bone marrow. Gallus gallus domesticus L. embryos and their respective yolk sacs at embryonic day 3 (E3) and up to E21 were collected and processed according to standard histological techniques for paraffin embedding. The slides were stained with hematoxylin-eosin, Lennert's Giemsa, and Sirius Red at pH 10.2, and investigated by light microscopy. This study demonstrated that the yolk sac was a unique hematopoietic site between E4 and E12. Hematopoiesis occurred in the yolk sac and bone marrow between E13 and E20. The liver showed granulocytic differentiation in the connective tissue of portal spaces at E15 and onwards. The yolk sac showed expansion of erythrocytic and granulocytic lineages from E6 to E19, and E7 to E20, respectively. The results suggest that the yolk sac is the major intermediate erythropoietic and granulopoietic site where expansion and differentiation occur during chicken development. The hepatic hematopoiesis is restricted to the portal spaces and represented by the granulocytic lineage.


Asunto(s)
Células de la Médula Ósea/citología , Hematopoyesis , Hígado/citología , Hígado/embriología , Saco Vitelino/citología , Saco Vitelino/embriología , Animales , Embrión de Pollo , Eritropoyesis , Granulocitos/citología , Hígado/irrigación sanguínea , Vena Porta/citología , Vena Porta/embriología , Factores de Tiempo
5.
In. Lemos, Elba R. Sampaio de; D'Andrea, Paulo Sergio. Trabalho de campo com animais: procedimentos, riscos e biossegurança. Rio de Janeiro, FIOCRUZ, 2014. p.145-151, ilus.
Monografía en Portugués | LILACS | ID: lil-762444
6.
Mem. Inst. Oswaldo Cruz ; 98(7): 893-898, Oct. 2003. ilus, tab
Artículo en Inglés | LILACS | ID: lil-352390

RESUMEN

Angiostrongylus costaricensis intermediate hosts are terrestrial mollusks mostly belonging to the Veronicellidae family. In the present investigation we focused on the mechanisms of larval expulsion from Sarasinula marginata infected with A. costaricensis. Twenty-five mollusks were individually infected with 5000 L1 and sacrificed at 30 min and 1, 2, 4, 6, and 8 h post-infection and at days 1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 20, 21, 22, 25, 26, 28, and 30 post-infection; the mollusks were then fixed and stained. Diverse organs involved throughout the course of the migratory routes of larvae from oral penetration on were specified and the mechanisms of larval access to the fibromuscular layer through the kidney, rectum, and vascular system were defined. The elimination of L3, derived from oral and/or cutaneous infections, appears to depend on granulomas located close to the excretory ducts of mucous cells.


Asunto(s)
Animales , Angiostrongylus , Moluscos , Interacciones Huésped-Parásitos , Factores de Tiempo
7.
Mem Inst Oswaldo Cruz ; 98(7): 893-8, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14762514

RESUMEN

Angiostrongylus costaricensis intermediate hosts are terrestrial mollusks mostly belonging to the Veronicellidae family. In the present investigation we focused on the mechanisms of larval expulsion from Sarasinula marginata infected with A. costaricensis. Twenty-five mollusks were individually infected with 5000 L1 and sacrificed at 30 min and 1, 2, 4, 6, and 8 h post-infection and at days 1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 20, 21, 22, 25, 26, 28, and 30 post-infection; the mollusks were then fixed and stained. Diverse organs involved throughout the course of the migratory routes of larvae from oral penetration on were specified and the mechanisms of larval access to the fibromuscular layer through the kidney, rectum, and vascular system were defined. The elimination of L3, derived from oral and/or cutaneous infections, appears to depend on granulomas located close to the excretory ducts of mucous cells.


Asunto(s)
Angiostrongylus/fisiología , Moluscos/parasitología , Animales , Interacciones Huésped-Parásitos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...