Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979379

RESUMEN

Background & Aims: Single-cell RNA sequencing (scRNA) has empowered many insights into gastrointestinal microenvironments. However, profiling human biopsies using droplet-based scRNA (D-scRNA) is challenging since it requires immediate processing to minimize epithelial cell damage. In contrast, picowell-based (P-scRNA) platforms permit short-term frozen storage before sequencing. We compared P- and D-scRNA platforms on cells derived from human colon biopsies. Methods: Endoscopic rectosigmoid mucosal biopsies were obtained from two adults and conducted D-scRNA (10X Chromium) and P-scRNA (Honeycomb HIVE) in parallel using an individual's pool of single cells (> 10,000 cells/participant). Three experiments were performed to evaluate 1) P-scRNA with cells under specific storage conditions (immediately processed [fresh], vs. frozen at -20C vs. -80C [2 weeks]); 2) fresh P-scRNA versus fresh D-scRNA; and 3) P-scRNA stored at -80C with fresh D-scRNA. Results: Significant recovery of loaded cells was achieved for fresh (80.9%) and -80C (48.5%) P-scRNA and D-scRNA (76.6%), but not -20C P-scRNA (3.7%). However, D-scRNA captures more typeable cells among recovered cells (71.5% vs. 15.8% Fresh and 18.4% -80C P-scRNA), and these cells exhibit higher gene coverage at the expense of higher mitochondrial read fractions across most cell types. Cells profiled using D-scRNA demonstrated more consistent gene expression profiles among the same cell type than those profiled using P-scRNA. Significant intra-cell-type differences were observed in profiled gene classes across platforms. Conclusions: Our results highlight non-overlapping advantages of P-scRNA and D-scRNA and underscore the need for innovation to enable high-fidelity capture of colonic epithelial cells. The platform-specific variation highlights the challenges of maintaining rigor and reproducibility across studies that use different platforms.

2.
Cancer Prev Res (Phila) ; 17(8): 361-376, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669694

RESUMEN

There is a high unmet need for early detection approaches for diffuse gastric cancer (DGC). We examined whether the stool proteome of mouse models of gastric cancer (GC) and individuals with hereditary diffuse gastric cancer (HDGC) have utility as biomarkers for early detection. Proteomic mass spectrometry of the stool of a genetically engineered mouse model driven by oncogenic KrasG12D and loss of p53 and Cdh1 in gastric parietal cells [known as Triple Conditional (TCON) mice] identified differentially abundant proteins compared with littermate controls. Immunoblot assays validated a panel of proteins, including actinin alpha 4 (ACTN4), N-acylsphingosine amidohydrolase 2 (ASAH2), dipeptidyl peptidase 4 (DPP4), and valosin-containing protein (VCP), as enriched in TCON stool compared with littermate control stool. Immunofluorescence analysis of these proteins in TCON stomach sections revealed increased protein expression compared with littermate controls. Proteomic mass spectrometry of stool obtained from patients with HDGC with CDH1 mutations identified increased expression of ASAH2, DPP4, VCP, lactotransferrin (LTF), and tropomyosin-2 relative to stool from healthy sex- and age-matched donors. Chemical inhibition of ASAH2 using C6 urea ceramide was toxic to GC cell lines and GC patient-derived organoids. This toxicity was reversed by adding downstream products of the S1P synthesis pathway, which suggested a dependency on ASAH2 activity in GC. An exploratory analysis of the HDGC stool microbiome identified features that correlated with patient tumors. Herein, we provide evidence supporting the potential of analyzing stool biomarkers for the early detection of DGC. Prevention Relevance: This study highlights a novel panel of stool protein biomarkers that correlate with the presence of DGC and has potential use as early detection to improve clinical outcomes.


Asunto(s)
Biomarcadores de Tumor , Detección Precoz del Cáncer , Heces , Proteómica , Neoplasias Gástricas , Heces/química , Heces/microbiología , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Animales , Humanos , Ratones , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patología , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/genética , Detección Precoz del Cáncer/métodos , Femenino , Proteómica/métodos , Masculino , Persona de Mediana Edad , Espectrometría de Masas/métodos , Modelos Animales de Enfermedad
3.
Genome Med ; 15(1): 49, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438797

RESUMEN

BACKGROUND: The gut microbiome is a critical modulator of host immunity and is linked to the immune response to respiratory viral infections. However, few studies have gone beyond describing broad compositional alterations in severe COVID-19, defined as acute respiratory or other organ failure. METHODS: We profiled 127 hospitalized patients with COVID-19 (n = 79 with severe COVID-19 and 48 with moderate) who collectively provided 241 stool samples from April 2020 to May 2021 to identify links between COVID-19 severity and gut microbial taxa, their biochemical pathways, and stool metabolites. RESULTS: Forty-eight species were associated with severe disease after accounting for antibiotic use, age, sex, and various comorbidities. These included significant in-hospital depletions of Fusicatenibacter saccharivorans and Roseburia hominis, each previously linked to post-acute COVID syndrome or "long COVID," suggesting these microbes may serve as early biomarkers for the eventual development of long COVID. A random forest classifier achieved excellent performance when tasked with classifying whether stool was obtained from patients with severe vs. moderate COVID-19, a finding that was externally validated in an independent cohort. Dedicated network analyses demonstrated fragile microbial ecology in severe disease, characterized by fracturing of clusters and reduced negative selection. We also observed shifts in predicted stool metabolite pools, implicating perturbed bile acid metabolism in severe disease. CONCLUSIONS: Here, we show that the gut microbiome differentiates individuals with a more severe disease course after infection with COVID-19 and offer several tractable and biologically plausible mechanisms through which gut microbial communities may influence COVID-19 disease course. Further studies are needed to expand upon these observations to better leverage the gut microbiome as a potential biomarker for disease severity and as a target for therapeutic intervention.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Microbiota , Humanos , Síndrome Post Agudo de COVID-19 , Metagenoma
4.
Res Sq ; 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35677075

RESUMEN

The gut microbiome is a critical modulator of host immunity and is linked to the immune response to respiratory viral infections. However, few studies have gone beyond describing broad compositional alterations in severe COVID-19, defined as acute respiratory or other organ failure. We profiled 127 hospitalized patients with COVID-19 (n=79 with severe COVID-19 and 48 with moderate) who collectively provided 241 stool samples from April 2020 to May 2021 to identify links between COVID-19 severity and gut microbial taxa, their biochemical pathways, and stool metabolites. 48 species were associated with severe disease after accounting for antibiotic use, age, sex, and various comorbidities. These included significant in-hospital depletions of Fusicatenibacter saccharivorans and Roseburia hominis, each previously linked to post-acute COVID syndrome or "long COVID", suggesting these microbes may serve as early biomarkers for the eventual development of long COVID. A random forest classifier achieved excellent performance when tasked with predicting whether stool was obtained from patients with severe vs. moderate COVID-19. Dedicated network analyses demonstrated fragile microbial ecology in severe disease, characterized by fracturing of clusters and reduced negative selection. We also observed shifts in predicted stool metabolite pools, implicating perturbed bile acid metabolism in severe disease. Here, we show that the gut microbiome differentiates individuals with a more severe disease course after infection with COVID-19 and offer several tractable and biologically plausible mechanisms through which gut microbial communities may influence COVID-19 disease course. Further studies are needed to validate these observations to better leverage the gut microbiome as a potential biomarker for disease severity and as a target for therapeutic intervention.

5.
J Nucl Med ; 57(10): 1607-1611, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27230929

RESUMEN

Immune checkpoint inhibitors have made rapid advances, resulting in multiple Food and Drug Administration-approved therapeutics that have markedly improved survival. However, these benefits are limited to a minority subpopulation that achieves a response. Predicting which patients are most likely to benefit would be valuable for individual therapy optimization. T-cell markers such as CD3-by examining active recruitment of the T cells responsible for cancer-cell death-represent a more direct approach to monitoring tumor immune response than pretreatment biopsy or genetic screening. This approach could be especially effective as numerous different therapeutic strategies emerge, decreasing the need for drug-specific biomarkers and instead focusing on T-cell infiltration, which has been previously correlated with treatment response. METHODS: A CD3 PET imaging agent targeting T cells was synthesized to test the role of such imaging as a predictive marker. The 89Zr-p-isothiocyanatobenzyl-deferoxamine-CD3 PET probe was assessed in a murine tumor xenograft model of anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4) immunotherapy of colon cancer. RESULTS: Imaging on day 14 revealed 2 distinct groups of mice stratified by PET signal intensity. Although there was no significant difference in tumor volume on the day of imaging, in the high-uptake group subsequent measurements revealed significantly smaller tumors than in either the low-uptake group or the untreated controls. In contrast, there was no significant difference in the size of tumors between the low-uptake and untreated control mice. CONCLUSION: These findings indicate that high CD3 PET uptake in the anti-CTLA-4-treated mice correlated with subsequent reduced tumor volume and was a predictive biomarker of response.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Complejo CD3/metabolismo , Antígeno CTLA-4/inmunología , Tomografía de Emisión de Positrones , Animales , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Neoplasias del Colon/terapia , Femenino , Ratones , Ratones Endogámicos BALB C , Resultado del Tratamiento
6.
Biotechnol Prog ; 32(2): 440-6, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26587686

RESUMEN

The use of transplanted adipose tissue to repair crucial defects is clinically interesting for surgical reconstruction. Terminally differentiated adipocytes are utilized to promote the healthy regeneration of defective tissue. Use of differentiated mesenchymal stem cells, capable of differentiation into adipocytes, is advantageous because of their regenerative properties. Conventionally, the differentiation of hMSCs toward adipocytes occurs through chemical stimulation. We designed a microfluidic system, consisting of plastic tubing and a syringe pump, to create an environment of shear to accelerate this differentiation process. This system employed a flow rate equivalent to the accelerated flow rates found within the arterial system in order to promote and activate intracellular and extracellular proteins associated with the adipogenic lineage. Confirmation of sustained viability following shear exposure was obtained using a fluorescent live-dead assay. Visualization of intracellular lipid accumulation was achieved via Oil Red O staining. When placed into culture, shear stimulated hMSCs were further induced toward brown adipose tissue, as evidenced by a greater quantity of lipid triglycerides, relative to unstimulated hMSCs. qRT-PCR analysis validated the phenotypic changes observed when the hMSCs were later cultured in adipogenic differentiation media. Additionally, increased fold change for adipogenic markers such as LPL1, CFL1, and SSP1 were observed as a result of shear stimulation. The significance of this work lies in the demonstration that transient fluid shear exposure of hMSCs in suspension can influence differentiation into adipocytes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:440-446, 2016.


Asunto(s)
Adipocitos/citología , Adipogénesis , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Humanos , Técnicas Analíticas Microfluídicas
7.
Genome Announc ; 3(4)2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26227604

RESUMEN

Here, we report the isolation, identification, whole-genome sequencing, and annotation of four Bacillus species from internal stem tissue of the insulin plant Costus igneus, grown in Puerto Rico. The plant is of medicinal importance, as extracts from its leaves have been shown to lower blood sugar levels of hyperglycemic rats.

8.
Genome Announc ; 3(2)2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25883290

RESUMEN

Here, we report the genome sequences of Bacillus safensis RIT372 and Pseudomonas oryzihabitans RIT370 from Capsicum spp. Annotation revealed gene clusters for the synthesis of bacilysin, lichensin, and bacillibactin and sporulation killing factor (skfA) in Bacillus safensis RIT372 and turnerbactin and carotenoid in Pseudomonas oryzihabitans RIT370.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA