Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 385(6709): 651-656, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39116250

RESUMEN

The energetic disorder induced by fluctuating liquid environments acts in opposition to the precise control required for coherence-based sensing. Overcoming fluctuations requires a protected quantum subspace that only weakly interacts with the local environment. We report a ytterbium complex that exhibited an ultranarrow absorption linewidth in solution at room temperature with a full width at half maximum of 0.625 milli-electron volts. Using spectral hole burning, we measured an even narrower linewidth of 410 pico-electron volts at 77 kelvin. Narrow linewidths allowed low-field magnetic circular dichroism at room temperature, used to sense Earth-scale magnetic fields. These results demonstrated that ligand protection in lanthanide complexes could substantially diminish electronic state fluctuations. We have termed this system an "atomlike molecular sensor" (ALMS) and proposed approaches to improve its performance.

2.
Chem Sci ; 15(31): 12451-12458, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39118624

RESUMEN

Achieving ultranarrow absorption linewidths in the condensed phase enables optical state preparation of specific non-thermal states, a prerequisite for quantum-enabled technologies. The 4f orbitals of lanthanide(iii) complexes are often referred to as "atom-like," reflecting their isolated nature, and are promising substrates for the optical preparation of specific quantum states. To better understand the photophysical properties of 4f states and assess their potential for quantum applications, theoretical building blocks are required for rapid screening. In this study, an atomic-level perturbative calculation (i.e., spin-orbit crystal field, SOCF) is applied to various Yb(iii) complexes to investigate their linear absorption and emission through a fitting mechanism of their experimentally determined transition energies and oscillator strengths. In particular, the optical properties of (thiolfan)YbCl(THF) (thiolfan = 1,1'-bis(2,4-di-tert-butyl-6-thiomethylenephenoxy)ferrocene), a recently reported complex with an ultranarrow optical linewidth, are computed and compared to those of other Yb(iii) compounds. Through a transition energy sampling study, major contributors to the optical linewidth are identified. We observe particularly isolated f-f transitions and narrow linewidths, which we attribute to two distinct factors. Firstly, the ultra-high atomic similarity of the orbitals involved in the optical transition, along with the presence of an anisotropic crystal field, collectively contribute to the observed narrow transitions. Secondly, we note highly correlated excited-ground energy fluctuations that serve to greatly suppress inhomogeneous line-broadening. This article illustrates how SOCF can be used as a low-cost method to probe the influence of crystal field environment on the optical properties of Yb(iii) complexes to assist the development of novel lanthanide series quantum materials.

3.
Phys Chem Chem Phys ; 26(32): 21850-21860, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39102276

RESUMEN

The total photon economy of a chromophore molecular species represents a study of how absorbed photons partition among various electronic states and ultimately dissipate their excited energy into the environment. A complete accounting of these rates and pathways would allow one to optimize chromophores and their environments for applications. We describe a technique, fluorescent optical cycling (FOC), which allows for simultaneous observation of prompt and delayed emission during and after multiple pulsed excitation, ultimately granting access to multi-state photophysical rates. We exercise control over the excitation pulse train, which allows us to "optically shelve" long-lived intermediate states without the use of diode or flashlamp excitation. By recording all photon arrival times in the visible and shortwave infrared, we can simultaneously resolve fluorescence, phosphorescence, and singlet oxygen sensitization in a single experiment. We use FOC to examine the photophysics of dual emitting bis(di-R-phosphino)alkanethiophene-pyridine-platinum ([Pt(thpy)(dppm)]+) under different solvation conditions, revealing changes in intersystem crossing and phosphorescent rates induced by the external heavy atom effect. Coupling FOC with decay associated Fourier spectroscopy (DAFS), we demonstrate simultaneous correlated spectral and lifetime data in this dual emitting complex. Finally, FOC combined with superconducting nanowire single photon detectors (SNSPDs) allows us to observe the shortwave infrared region (SWIR) phosphorescence of singlet oxygen sensitized by Rose Bengal. Overall, FOC provides a powerful tool to simultaneously study multiple photophysics across timescales, even in weakly populated electronic states.

4.
Nat Chem Biol ; 20(7): 906-915, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831036

RESUMEN

Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.


Asunto(s)
Clorofila , Clorofila/química , Clorofila/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Fotosíntesis , Transferencia de Energía , Microscopía por Crioelectrón , Conformación Proteica , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo
5.
Nat Chem ; 16(6): 970-978, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38528102

RESUMEN

In vivo fluorescence imaging in the shortwave infrared (SWIR, 1,000-1,700 nm) and extended SWIR (ESWIR, 1,700-2,700 nm) regions has tremendous potential for diagnostic imaging. Although image contrast has been shown to improve as longer wavelengths are accessed, the design and synthesis of organic fluorophores that emit in these regions is challenging. Here we synthesize a series of silicon-RosIndolizine (SiRos) fluorophores that exhibit peak emission wavelengths from 1,300-1,700 nm and emission onsets of 1,800-2,200 nm. We characterize the fluorophores photophysically (both steady-state and time-resolved), electrochemically and computationally using time-dependent density functional theory. Using two of the fluorophores (SiRos1300 and SiRos1550), we formulate nanoemulsions and use them for general systemic circulatory SWIR fluorescence imaging of the cardiovascular system in mice. These studies resulted in high-resolution SWIR images with well-defined vasculature visible throughout the entire circulatory system. This SiRos scaffold establishes design principles for generating long-wavelength emitting SWIR and ESWIR fluorophores.


Asunto(s)
Colorantes Fluorescentes , Rayos Infrarrojos , Imagen Óptica , Silicio , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Silicio/química , Animales , Ratones , Indolizinas/química , Indolizinas/síntesis química , Teoría Funcional de la Densidad
6.
J Phys Chem Lett ; 15(7): 1802-1810, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38329913

RESUMEN

Near infrared (NIR, 700-1000 nm) and short-wave infrared (SWIR, 1000-2000 nm) dye molecules exhibit significant nonradiative decay rates from the first singlet excited state to the ground state. While these trends can be empirically explained by a simple energy gap law, detailed mechanisms of nearly universal behavior have remained unsettled for many cases. Theoretical and experimental results for two representative NIR/SWIR dye molecules reported here clarify the key mechanism for the observed energy gap law behavior. It is shown that the first derivative nonadiabatic coupling terms serve as major coupling pathways for nonadiabatic decay processes from the first excited singlet state to the ground state for these NIR and SWIR dye molecules and that vibrational modes other than the highest frequency modes also make significant contributions to the rate. This assessment is corroborated by further theoretical comparison with possible alternative mechanisms of intersystem crossing to triplet states and also by comparison with experimental data for deuterated molecules.

7.
Nat Chem ; 16(5): 800-808, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38316987

RESUMEN

Cryo-electron microscopy has delivered a resolution revolution for biological self-assemblies, yet only a handful of structures have been solved for synthetic supramolecular materials. Particularly for chromophore supramolecular aggregates, high-resolution structures are necessary for understanding and modulating the long-range excitonic coupling. Here, we present a 3.3 Å structure of prototypical biomimetic light-harvesting nanotubes derived from an amphiphilic cyanine dye (C8S3-Cl). Helical 3D reconstruction directly visualizes the chromophore packing that controls the excitonic properties. Our structure clearly shows a brick layer arrangement, revising the previously hypothesized herringbone arrangement. Furthermore, we identify a new non-biological supramolecular motif-interlocking sulfonates-that may be responsible for the slip-stacked packing and J-aggregate nature of the light-harvesting nanotubes. This work shows how independently obtained native-state structures complement photophysical measurements and will enable accurate understanding of (excitonic) structure-function properties, informing materials design for light-harvesting chromophore aggregates.

8.
Chem Commun (Camb) ; 60(8): 1000-1003, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38167671

RESUMEN

The design of bright short-wave infrared fluorophores remains a grand challenge. Here we investigate the impact of deuteration on the properties in a series of heptamethine dyes, the absorption of which spans near-infrared and SWIR regions. We demonstrate that it is a generally applicable strategy that leads to enhanced quantum yields of fluorescence, longer-lived singlet excited states and suppressed rates of non-radiative deactivation processes.

9.
J Phys Chem Lett ; 15(2): 590-597, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38198595

RESUMEN

Polyatomic molecules equipped with optical cycling centers (OCCs), enabling continuous photon scattering during optical excitation, are exciting candidates for advancing quantum information science. However, as these molecules grow in size and complexity, the interplay of complex vibronic couplings on optical cycling becomes a critical but relatively unexplored consideration. Here, we present an extensive exploration of Fermi resonances in large-scale OCC-containing molecules using high-resolution dispersed laser-induced fluorescence and excitation spectroscopy. These resonances manifest as vibrational coupling leading to intensity borrowing by combination bands near optically active harmonic bands, which require additional repumping lasers for effective optical cycling. To mitigate these effects, we explore altering the vibrational energy level spacing through substitutions on the phenyl ring or changes in the OCC itself. While the complete elimination of vibrational coupling in complex molecules remains challenging, our findings highlight significant mitigation possibilities, opening new avenues for optimizing optical cycling in large polyatomic molecules.

10.
J Phys Chem Lett ; 14(42): 9456-9463, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37830914

RESUMEN

Large area absorbers with localized defect emission are of interest for energy concentration via the antenna effect. Transfer between 2D and 0D quantum-confined structures is advantageous as it affords maximal lateral area antennas with continuously tunable emission. We report the quantum efficiency of energy transfer in in situ grown HgTe nanoplatelet (NPL)/quantum dot (QD) heterostructures to be near unity (>85%), while energy transfer in separately synthesized and well separated solutions of HgTe NPLs to QDs only reaches 47 ± 11% at considerably higher QD concentrations. Using Kinetic Monte Carlo simulations, we estimate an exciton diffusion constant of 1-10 cm2/s in HgTe NPLs, the same magnitude as that of 2D semiconductors. We also simulate in-solution energy transfer between NPLs and QDs, recovering an R-4 dependence consistent with 2D-0D near-field energy transfer even in randomly distributed NPL/QD mixtures. This highlights the advantage of NPLs 2D morphology and the efficiency of NPL/QD heterostructures and mixtures for energy harvesting.

11.
J Chem Educ ; 100(8): 2860-2872, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37577453

RESUMEN

A parallel series of general chemistry courses for Life Science Majors was created in an effort to support students and improve general chemistry outcomes. We created a two-quarter enhanced general chemistry course series that is not remedial, but instead implements several evidence-based teaching practices including Process Oriented Guided Inquiry Learning (POGIL), Peer-Led Team Learning (PLTL), and the Learning Assistant (LA) model. We found that students who took enhanced general chemistry had higher persistence to the subsequent first organic chemistry course, and performed equally well in the organic course compared to their peers who took standard general chemistry. Students in the first enhanced general chemistry course also reported significantly higher belonging, although we were unable to determine if increased belonging was associated with the increased persistence to organic chemistry. Rather we found that the positive association between taking the enhanced general chemistry course and persistence to organic chemistry was mediated by higher grades received in the enhanced general chemistry course. Our findings highlight the responsibility we have as educators to carefully consider the pedagogical practices we use, in addition to how we assign student grades.

12.
J Chem Phys ; 158(20)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37218700

RESUMEN

Quantitative fluorescence quenching is a common analytical approach to studying the mechanism of chemical reactions. The Stern-Volmer (S-V) equation is the most common expression used to analyze the quenching behavior and can be used to extract kinetics in complex environments. However, the approximations underlying the S-V equation are incompatible with Förster Resonance Energy Transfer (FRET) acting as the primary quenching mechanism. The nonlinear distance dependence of FRET leads to significant departures from "standard" S-V quenching curves, both by modulating the interaction range of donor species and by increasing the effect of component diffusion. We demonstrate this inadequacy by probing the fluorescence quenching of long-lifetime lead sulfide quantum dots mixed with plasmonic covellite copper sulfide nanodisks (NDs), which serve as perfect fluorescent quenchers. By applying kinetic Monte Carlo methods, which consider particle distributions and diffusion, we are able to quantitatively reproduce experimental data, which show significant quenching at very small concentrations of NDs. The distribution of interparticle distances and diffusion are concluded to play important roles in fluorescence quenching, particularly in the shortwave infrared, where photoluminescent lifetimes are often long relative to diffusion time scales.

13.
Nanoscale ; 15(8): 3841-3849, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36734651

RESUMEN

Excitonic chromophore aggregates have wide-ranging applicability in fields such as imaging and energy harvesting; however their rational design requires adapting principles of self-assembly to the requirements of excited state coupling. Using the well-studied amphiphilic cyanine dye C8S3 as a template-known to assemble into tubular excitonic aggregates-we synthesize several redshifted variants and study their self-assembly and photophysics. The new pentamethine dyes retain their tubular self-assembly and demonstrate nearly identical bathochromic shifts and lineshapes well into near-infrared wavelengths. However, detailed photophysical analysis finds that the new aggregates show a significant decline in superradiance. Additionally, cryo-TEM reveals that these aggregates readily form short bundles of nanotubes that have nearly half the radii of their trimethine comparators. We employ computational screening to gain intuition on how the structural components of these new aggregates affect their excitonic states, finding that the narrower tubes are able to assemble into a larger number of arrangements, resulting in more disordered aggregates (i.e. less superradiant) with highly similar degrees of redshift.

14.
J Phys Chem Lett ; 14(2): 552-558, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36630700

RESUMEN

We demonstrate a method for separating and resolving the dynamics of multiple emitters without the use of conventional filters. By directing the photon emission through a fixed path-length imbalanced Mach-Zehnder interferometer, we interferometrically cancel (or enhance) certain spectral signatures corresponding to one emissive species. Our approach, Spectrally selective Time-resolved Emission through Fourier-filtering (STEF), leverages the detection and subtraction of both outputs of a tuned Mach-Zehnder interferometer, which can be combined with time-correlated single photon counting (TCSPC) or confocal imaging to demix multiple emitter signatures. We develop a procedure to calibrate out imperfections in Mach-Zehnder interferometry schemes. Additionally, we demonstrate the range and utility of STEF by performing the following procedures with one measurement: (1) filtering out laser scatter from a sample, (2) separating and measuring a fluorescence lifetime from a binary chromophore mixture with overlapped emission spectra, (3) confocally imaging and separately resolving the standard fluorescent stains in bovine pulmonary endothelial cells and nearly overlapping fluorescent stains on RAW 264.7 cells. This form of spectral balancing can allow for robust and tunable signal sorting.


Asunto(s)
Células Endoteliales , Interferometría , Animales , Bovinos , Interferometría/métodos , Rayos Láser , Luz , Fotones
15.
J Phys Chem Lett ; 13(47): 11029-11035, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36413655

RESUMEN

We report the production and spectroscopic characterization of strontium(I) phenoxide (SrOC6H5 or SrOPh) and variants featuring electron-withdrawing groups designed to suppress vibrational excitation during spontaneous emission from the electronically excited state. Optical cycling closure of these species, which is the decoupling of the vibrational state changes from spontaneous optical decay, is found by dispersed laser-induced fluorescence spectroscopy to be high, in accordance with theoretical predictions. A high-resolution, rotationally resolved laser excitation spectrum is recorded for SrOPh, allowing the estimation of spectroscopic constants and identification of candidate optical cycling transitions for future work. The results confirm the promise of strontium phenoxides for laser cooling and quantum state detection at the single-molecule level.


Asunto(s)
Estroncio , Vibración , Espectrometría de Fluorescencia , Electrones , Frío
16.
Nat Chem ; 14(9): 995-999, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35879444

RESUMEN

Molecular design principles provide guidelines for augmenting a molecule with a smaller group of atoms to realize a desired property or function. We demonstrate that these concepts can be used to create an optical cycling centre, the Ca(I)-O unit, that can be attached to a number of aromatic ligands, enabling the scattering of many photons from the resulting molecules without changing the molecular vibrational state. Such capability plays a central role in quantum state preparation and measurement, as well as laser cooling and trapping, and is therefore a prerequisite for many quantum science and technology applications. We provide further molecular design principles that indicate the ability to optimize and expand this work to an even broader class of molecules. This represents a great step towards a quantum functional group, which may serve as a generic qubit moiety that can be attached to a wide range of molecular structures and surfaces.


Asunto(s)
Luz , Fotones , Rayos Láser , Estructura Molecular , Compuestos Orgánicos
17.
J Phys Chem Lett ; 13(30): 7029-7035, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35900113

RESUMEN

Rapid and repeated photon cycling has enabled precision metrology and the development of quantum information systems using atoms and simple molecules. Extending optical cycling to structurally complex molecules would provide new capabilities in these areas, as well as in ultracold chemistry. Increased molecular complexity, however, makes realizing closed optical transitions more difficult. Building on already established strong optical cycling of diatomic, linear triatomic, and symmetric top molecules, recent work has pointed the way to cycling of larger molecules, including phenoxides. The paradigm for these systems is an optical cycling center bonded to a molecular ligand. Theory has suggested that cycling may be extended to even larger ligands, like naphthalene, pyrene, and coronene. Herein, we study optical excitation and fluorescent vibrational branching of CaO-[Formula: see text], SrO-[Formula: see text], and CaO-[Formula: see text] and find only weak decay to excited vibrational states, indicating a promising path to full quantum control and laser cooling of large arene-based molecules.

18.
J Chem Phys ; 157(3): 031104, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868930

RESUMEN

We present a highly efficient method for the extraction of optical properties of very large molecules via the Bethe-Salpeter equation. The crutch of this approach is the calculation of the action of the effective Coulombic interaction, W, through a stochastic time-dependent Hartree propagation, which uses only ten stochastic orbitals rather than propagating the full sea of occupied states. This leads to a scaling that is at most cubic in system size with trivial parallelization of the calculation. We apply this new method to calculate the spectra and electronic density of the dominant excitons of a carbon-nanohoop bound fullerene system with 520 electrons using less than 4000 core hours.

19.
Dalton Trans ; 51(24): 9223-9228, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35670471

RESUMEN

The dynamic photoluminescence properties, and potential quenching mechanisms, of anti-B18H22, 4,4'-Br2-anti-B18H20, and 4,4'-I2-anti-B18H20 are investigated in solution and polymer films. UV stability studies of the neat powders show no decomposition occurring after intense 7 day light soaking. In contrast, clusters incorporated into polymer films are found to degrade into smaller borane fragments under the same irradiation conditions. To highlight the utility of these compounds, we leverage their favorable optical properties in a prototype UV imaging setup.

20.
ACS Nano ; 16(4): 4989-5035, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35318848

RESUMEN

There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA