Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evol Lett ; 8(1): 149-160, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370549

RESUMEN

One of the most pressing questions we face as biologists is to understand how climate change will affect the evolutionary dynamics of natural populations and how these dynamics will in turn affect population recovery. Increasing evidence shows that sexual selection favors population viability and local adaptation. However, sexual selection can also foster sexual conflict and drive the evolution of male harm to females. Male harm is extraordinarily widespread and has the potential to suppress female fitness and compromise population growth, yet we currently ignore its net effects across taxa or its influence on local adaptation and evolutionary rescue. We conducted a comparative meta-analysis to quantify the impact of male harm on female fitness and found an overall negative effect of male harm on female fitness. Negative effects seem to depend on proxies of sexual selection, increasing inversely to the female relative size and in species with strong sperm competition. We then developed theoretical models to explore how male harm affects adaptation and evolutionary rescue. We show that, when sexual conflict depends on local adaptation, population decline is reduced, but at the cost of slowing down genetic adaptation. This trade-off suggests that eco-evolutionary feedback on sexual conflict can act like a double-edged sword, reducing extinction risk by buffering the demographic costs of climate change, but delaying genetic adaptation. However, variation in the mating system and male harm type can mitigate this trade-off. Our work shows that male harm has widespread negative effects on female fitness and productivity, identifies potential mechanistic factors underlying variability in such costs across taxa, and underscores how acknowledging the condition-dependence of male harm may be important to understand the demographic and evolutionary processes that impact how species adapt to environmental change.

2.
Evolution ; 78(1): 86-97, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37888875

RESUMEN

Whether sexual selection facilitates or hampers the ability to plastically respond to novel environments might depend on population structure, via its effects on sexual interactions and associated fitness payoffs. Using experimentally evolved lines of the seed beetle Callosobruchus maculatus, we tested whether individuals evolving under different sexual selection (monogamy vs. polygamy) and population spatial structure (metapopulation vs. undivided populations) treatments differed in their response across developmental thermal conditions (control, hot, or stressful) in a range of fitness and fitness-associated traits. We found that individuals from subdivided populations had lower lifetime reproductive success at hot temperatures, but only in lines evolving under relaxed sexual selection, revealing a complex interaction between sexual selection, population structure, and thermal environmental stress on fitness. We also found an effect of population structure on several traits, including fertility and adult emergence success, under exposure to high thermal conditions. Finally, we found a strong negative effect of hot and stressful temperatures on fitness and associated traits. Our results show that population structure can exacerbate the impact of a warming climate, potentially leading to declines in population viability, but that sexual selection can buffer the negative influence of population subdivision on adaptation to warm temperatures.


Asunto(s)
Escarabajos , Selección Sexual , Animales , Temperatura , Conducta Sexual Animal/fisiología , Escarabajos/fisiología , Reproducción
3.
Elife ; 122023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37102499

RESUMEN

Strong sexual selection frequently leads to sexual conflict and ensuing male harm, whereby males increase their reproductive success at the expense of harming females. Male harm is a widespread evolutionary phenomenon with a strong bearing on population viability. Thus, understanding how it unfolds in the wild is a current priority. Here, we sampled a wild Drosophila melanogaster population and studied male harm across the normal range of temperatures under which it reproduces optimally in nature by comparing female lifetime reproductive success and underlying male harm mechanisms under monogamy (i.e. low male competition/harm) vs. polyandry (i.e. high male competition/harm). While females had equal lifetime reproductive success across temperatures under monogamy, polyandry resulted in a maximum decrease of female fitness at 24°C (35%), reducing its impact at both 20°C (22%), and 28°C (10%). Furthermore, female fitness components and pre- (i.e. harassment) and post-copulatory (i.e. ejaculate toxicity) mechanisms of male harm were asymmetrically affected by temperature. At 20°C, male harassment of females was reduced, and polyandry accelerated female actuarial aging. In contrast, the effect of mating on female receptivity (a component of ejaculate toxicity) was affected at 28°C, where the mating costs for females decreased and polyandry mostly resulted in accelerated reproductive aging. We thus show that, across a natural thermal range, sexual conflict processes and their effects on female fitness components are plastic and complex. As a result, the net effect of male harm on overall population viability is likely to be lower than previously surmised. We discuss how such plasticity may affect selection, adaptation and, ultimately, evolutionary rescue under a warming climate.


Asunto(s)
Drosophila melanogaster , Conducta Sexual Animal , Animales , Masculino , Femenino , Copulación , Reproducción , Adaptación Fisiológica
4.
J Evol Biol ; 36(4): 720-729, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36946550

RESUMEN

Advanced paternal age has been repeatedly shown to modulate offspring quality via male- and/or female-driven processes, and there are theoretical reasons to expect that some of these effects can be sex-specific. For example, sex allocation theory predicts that, when mated with low-condition males, mothers should invest more in their daughters compared to their sons. This is because male fitness is generally more condition-dependent and more variable than female fitness, which makes it less risky to invest in female offspring. Here, we explore whether paternal age can affect the quality and quantity of offspring in a sex-specific way using Drosophila melanogaster as a model organism. In order to understand the contribution of male-driven processes on paternal age effects, we also measured the seminal vesicle size of young and older males and explored its relationship with reproductive success and offspring quality. Older males had lower competitive reproductive success, as expected, but there was no difference between the offspring sex ratio of young and older males. However, we found that paternal age caused an increase in offspring quality (i.e., offspring weight), and that this increase was more marked in daughters than sons. We discuss different male- and female-driven processes that may explain such sex-specific paternal age effects.


Asunto(s)
Drosophila melanogaster , Edad Paterna , Animales , Femenino , Masculino , Drosophila melanogaster/genética , Reproducción , Razón de Masculinidad , Herencia Paterna
5.
J Evol Biol ; 36(2): 480-494, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36537352

RESUMEN

Sex differences in lifespan are ubiquitous across the tree of life and exhibit broad taxonomic patterns that remain a puzzle, such as males living longer than females in birds and vice versa in mammals. The prevailing unguarded X hypothesis explains sex differences in lifespan by differential expression of recessive mutations on the X or Z chromosome of the heterogametic sex, but has only received indirect support to date. An alternative hypothesis is that the accumulation of deleterious mutations and repetitive elements on the Y or W chromosome might lower the survival of the heterogametic sex ('toxic Y' hypothesis). Here, we use a new database to report lower survival of the heterogametic relative to the homogametic sex across 136 species of birds, mammals, reptiles and amphibians, as expected if sex chromosomes shape sex-specific lifespans, and consistent with previous findings. We also found that the relative sizes of both the X and the Y chromosomes in mammals (but not the Z or the W chromosomes in birds) are associated with sex differences in lifespan, as predicted by the unguarded X and the 'toxic Y'. Furthermore, we report that the relative size of the Y is negatively associated with male lifespan in mammals, so that small Y size correlates with increased male lifespan. In theory, toxic Y effects are expected to be particularly strong in mammals, and we did not find similar effects in birds. Our results confirm the role of sex chromosomes in explaining sex differences in lifespan across tetrapods and further suggest that, at least in mammals, 'toxic Y' effects may play an important part in this role.


Asunto(s)
Longevidad , Cromosomas Sexuales , Animales , Femenino , Masculino , Longevidad/genética , Cromosomas Sexuales/genética , Cromosoma Y , Aves/genética , Mamíferos/genética
6.
Anim Welf ; 32: e48, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38487426

RESUMEN

Zoos and aquaria are paying increasing attention to environmental enrichment, which has proven an effective tool for the improvement of animal welfare. However, several ongoing issues have hampered progress in environmental enrichment research. Foremost among these is the taxonomic bias, which hinders our understanding of the value of enrichment for neglected groups, such as reptiles. In this study, we evaluated the status of environmental enrichment for reptiles in European zoos using a survey approach. A total of 121 zoos (32% response rate) completed our main survey, focusing on the use of different enrichment types for reptiles. We found significant differences in the use and/or type of enrichment between reptile groups. Tortoises (family Testudinidae) and monitor lizards (genus Varanus) were the most enriched taxa while venomous snakes were the least. The enrichment types most used across taxa were structural/habitat design and dietary. A second, more detailed, questionnaire followed, where participants were questioned about specific enrichment techniques. A total of 42 enrichment methods were reported, with two being represented across all taxa: increasing structural/thermal complexity and enrichment objects. Finally, we present information from participating zoos on enrichment goals, assessment methods, sources of information for enrichment ideas, and whether enrichment for reptiles is considered essential and/or implemented routinely. Results suggest that, although usage is widespread across European zoos, our understanding of enrichment for reptiles needs to be re-evaluated, since many of the techniques reported tread a fine line between basic husbandry and actual enrichment.

7.
Ecol Evol ; 12(9): e9287, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36177144

RESUMEN

Phenotypic plasticity in reproductive behavior can be a strong driver of individual fitness. In species with high intra-sexual competition, changes in socio-sexual context can trigger quick adaptive plastic responses in males. In particular, a recent study in the vinegar fly (Drosophila melanogaster) shows that males derive net fitness benefits from being shortly exposed to female cues ahead of access to mating (termed sexual perception), but the underlying mechanisms of this phenomenon remain unknown. Here, we investigated the short-term effects of female perception on male pre- and post-copulatory components of reproductive performance: (a) mating success, (b) mating latency and duration, (c) sperm competitiveness, and (d) ejaculate effects on female receptivity and reproductive rate. We found that brief sexual perception increased mating duration, but had no effect on the other main pre- and post-copulatory fitness proxies recorded. This suggests that perception of female cues may not yield net fitness benefits for males in the short-term, but we discuss alternative explanations and future avenues of research.

9.
Am Nat ; 200(3): E110-E123, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35977789

RESUMEN

AbstractSensory perception of environmental cues has been shown to trigger plastic responses that can induce important fitness costs, including the dramatic modulation of aging across distant taxa. For example, male Drosophila melanogaster suffer a marked decrease in fitness, characterized by faster reproductive and actuarial aging, if they perceive female cues but fail to mate shortly after (aging via sexual perception). While this has been a breakthrough for our understanding of the mechanisms of aging, it raises the question of why such plastic responses evolved. Here, we used D. melanogaster to ask whether sexual perception costs may be a by-product of adaptive plastic responses to female cues. We found that (a) short-term perception (1 day) of female cues before mating opportunities increases male relative lifetime reproductive success in a competitive environment, (b) medium-term perception (3-7 days) is neutral, and (c) long-term perception (15 days) leads to reproductive costs. We then ran mathematical simulations under a wide range of sociosexual and demographic scenarios to show that such plastic male responses can be adaptive whenever mating rates fluctuate within the range experienced by D. melanogaster and other insects in the wild, suggesting that this may be a widespread strategy in nature. Finally, we show that, because the short-term benefits of plastic responses will be acquired mostly by high-quality males while long-term costs will be paid mostly by low-quality males, sexual perception can significantly magnify sexual selection (15%-27% average increase in the opportunity for selection).


Asunto(s)
Drosophila melanogaster , Reproducción , Adaptación Fisiológica , Animales , Drosophila melanogaster/fisiología , Femenino , Masculino , Percepción , Reproducción/fisiología , Conducta Sexual Animal/fisiología
10.
Ecol Evol ; 12(4): e8803, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35432938

RESUMEN

Sexual selection frequently promotes the evolution of aggressive behaviors that help males compete against their rivals, but which may harm females and hamper their fitness. Kin selection theory predicts that optimal male-male competition levels can be reduced when competitors are more genetically related to each other than to the population average, contributing to resolve this sexual conflict. Work in Drosophila melanogaster has spearheaded empirical tests of this idea, but studies so far have been conducted in laboratory-adapted populations in homogeneous rearing environments that may hamper kin recognition, and used highly skewed sex ratios that may fail to reflect average natural conditions. Here, we performed a fully factorial design with the aim of exploring how rearing environment (i.e., familiarity) and relatedness affect male-male aggression, male harassment, and overall male harm levels in flies from a wild population of Drosophila melanogaster, under more natural conditions. Namely, we (a) manipulated relatedness and familiarity so that larvae reared apart were raised in different environments, as is common in the wild, and (b) studied the effects of relatedness and familiarity under average levels of male-male competition in the field. We show that, contrary to previous findings, groups of unrelated-unfamiliar males were as likely to fight with each other and harass females than related-familiar males and that overall levels of male harm to females were similar across treatments. Our results suggest that the role of kin selection in modulating sexual conflict is yet unclear in Drosophila melanogaster, and call for further studies that focus on natural populations and realistic socio-sexual and ecological environments.

11.
Ecol Evol ; 10(20): 10986-11005, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33144943

RESUMEN

Explaining the evolutionary origin and maintenance of color polymorphisms is a major challenge in evolutionary biology. Such polymorphisms are commonly thought to reflect the existence of alternative behavioral or life-history strategies under negative frequency-dependent selection. The European common wall lizard Podarcis muralis exhibits a striking ventral color polymorphism that has been intensely studied and is often assumed to reflect alternative reproductive strategies, similar to the iconic "rock-paper-scissors" system described in the North American lizard Uta stansburiana. However, available studies so far have ignored central aspects in the behavioral ecology of this species that are crucial to assess the existence of alternative reproductive strategies. Here, we try to fill this gap by studying the social behavior, space use, and reproductive performance of lizards showing different color morphs, both in a free-ranging population from the eastern Pyrenees and in ten experimental mesocosm enclosures. In the natural population, we found no differences between morphs in site fidelity, space use, or male-female spatial overlap. Likewise, color morph was irrelevant to sociosexual behavior, space use, and reproductive success within experimental enclosures. Our results contradict the commonly held hypothesis that P. muralis morphs reflect alternative behavioral strategies, and suggest that we should instead turn our attention to alternative functional explanations.

12.
Biol Rev Camb Philos Soc ; 95(6): 1607-1629, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32691483

RESUMEN

A central question in ecology and evolution is to understand why sexual selection varies so much in strength across taxa; it has long been known that ecological factors are crucial to this. Temperature is a particularly salient abiotic ecological factor that modulates a wide range of physiological, morphological and behavioural traits, impacting individuals and populations at a global taxonomic scale. Furthermore, temperature exhibits substantial temporal variation (e.g. daily, seasonally and inter-seasonally), and hence for most species in the wild sexual selection will regularly unfold in a dynamic thermal environment. Unfortunately, studies have so far almost completely neglected the role of temperature as a modulator of sexual selection. Here, we outline the main pathways through which temperature can affect the intensity and form (i.e. mechanisms) of sexual selection, via: (i) direct effects on secondary sexual traits and preferences (i.e. trait variance, opportunity for selection and trait-fitness covariance), and (ii) indirect effects on key mating parameters, sex-specific reproductive costs/benefits, trade-offs, demography and correlated abiotic factors. Building upon this framework, we show that, by focusing exclusively on the first-order effects that environmental temperature has on traits linked with individual fitness and population viability, current global warming studies may be ignoring eco-evolutionary feedbacks mediated by sexual selection. Finally, we tested the general prediction that temperature modulates sexual selection by conducting a meta-analysis of available studies experimentally manipulating temperature and reporting effects on the variance of male/female reproductive success and/or traits under sexual selection. Our results show a clear association between temperature and sexual selection measures in both sexes. In short, we suggest that studying the feedback between temperature and sexual selection processes may be vital to developing a better understanding of variation in the strength of sexual selection in nature, and its consequences for population viability in response to environmental change (e.g. global warming).


Asunto(s)
Selección Genética , Selección Sexual , Femenino , Humanos , Masculino , Fenotipo , Reproducción , Temperatura
13.
Nat Ecol Evol ; 4(8): 1141-1148, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32451427

RESUMEN

Recent years have seen an explosion of interest in the overlap between kin selection and sexual selection, particularly concerning how kin selection can put the brakes on harmful sexual conflict. However, there remains a significant disconnect between theory and empirical research. Whilst empirical work has focused on kin-discriminating behaviour, theoretical models have assumed indiscriminating behaviour. Additionally, theoretical work makes particular demographic assumptions that constrain the relationship between genetic relatedness and the scale of competition, and it is not clear that these assumptions reflect the natural setting in which sexual conflict has been empirically studied. Here, we plug this gap between current theoretical and empirical understanding by developing a mathematical model of sexual conflict that incorporates kin discrimination and different patterns of dispersal. We find that kin discrimination and group dispersal inhibit harmful male behaviours at an individual level, but kin discrimination intensifies sexual conflict at the population level.


Asunto(s)
Modelos Teóricos , Conducta Sexual Animal , Animales , Demografía , Masculino
14.
J Evol Biol ; 2020 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-32335965

RESUMEN

Disentangling the relationship between age and reproduction is central to understand life-history evolution, and recent evidence shows that considering condition-dependent mortality is a crucial piece of this puzzle. For example, nonrandom mortality of 'low-condition' individuals can lead to an increase in average lifespan. However, selective disappearance of such low-condition individuals may also affect reproductive senescence at the population level due to trade-offs between physiological functions related to survival/lifespan and the maintenance of reproductive functions. Here, we address the idea that condition-dependent extrinsic mortality (i.e. simulated predation) may increase the age-related decline in male reproductive success and with it the potential for sexual conflict, by comparing reproductive ageing in Drosophila melanogaster male/female cohorts exposed (or not) to condition-dependent simulated predation across time. Although female reproductive senescence was not affected by predation, male reproductive senescence was considerably higher under predation, due mainly to an accelerated decline in offspring viability of 'surviving' males with age. This sex-specific effect suggests that condition-dependent extrinsic mortality can exacerbate survival-reproduction trade-offs in males, which are typically under stronger condition-dependent selection than females. Interestingly, condition-dependent extrinsic mortality did not affect mating success, hinting that accelerated reproductive senescence is due to a decrease in male post-copulatory fitness components. Our results support the recent proposal that male ageing can be an important source of sexual conflict, further suggesting this effect could be exacerbated under more natural conditions.

15.
Brain Behav Evol ; 93(4): 182-195, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31437837

RESUMEN

Body size correlates with most structural and functional components of an organism's phenotype - brain size being a prime example of allometric scaling with animal size. Therefore, comparative studies of brain evolution in vertebrates rely on controlling for the scaling effects of body size variation on brain size variation by calculating brain weight/body weight ratios. Differences in the brain size-body size relationship between taxa are usually interpreted as differences in selection acting on the brain or its components, while selection pressures acting on body size, which are among the most prevalent in nature, are rarely acknowledged, leading to conflicting and confusing conclusions. We address these problems by comparing brain-body relationships from across >1,000 species of birds and non-avian reptiles. Relative brain size in birds is often assumed to be 10 times larger than in reptiles of similar body size. We examine how differences in the specific gravity of body tissues and in body design (e.g., presence/absence of a tail or a dense shell) between these two groups can affect estimates of relative brain size. Using phylogenetic comparative analyses, we show that the gap in relative brain size between birds and reptiles has been grossly exaggerated. Our results highlight the need to take into account differences between taxa arising from selection pressures affecting body size and design, and call into question the widespread misconception that reptile brains are small and incapable of supporting sophisticated behavior and cognition.


Asunto(s)
Evolución Biológica , Aves/anatomía & histología , Tamaño Corporal , Encéfalo/anatomía & histología , Reptiles/anatomía & histología , Animales , Tamaño de los Órganos , Gravedad Específica
16.
Ecol Evol ; 9(11): 6501-6507, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31236239

RESUMEN

Understanding the effects of male and female age on reproductive success is vital to explain the evolution of life history traits and sex-specific aging. A general prediction is that pre-/postmeiotic aging processes will lead to a decline in the pre- and postcopulatory abilities of both males and females. However, in as much the sexes have different strategies to optimize their fitness, the decline of reproductive success late in life can be modulated by social context, such as sex ratio, in a sex-specific manner. In this study, we used Drosophila melanogaster to investigate whether sex ratio at mating modulates age effects on male and female reproductive success. As expected, male and female age caused a decrease in reproductive success across male-biased and female-biased social contexts but, contrary to previous findings, social context did not modulate age-related fitness decline in either of the two sexes. We discuss these results in the light of how sex ratio might modulate pre-/postcopulatory abilities and the opportunity for inter- and intrasexual competition in D. melanogaster, and generally suggest that social context effects on these processes are likely to be species specific.

17.
Proc Biol Sci ; 285(1892)2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487307

RESUMEN

Sex differences in lifespan are ubiquitous, but the underlying causal factors remain poorly understood. Inter- and intrasexual social interactions are well known to influence lifespan in many taxa, but it has proved challenging to separate the role of sex-specific behaviours from wider physiological differences between the sexes. To address this problem, we genetically manipulated the sexual identity of the nervous system-and hence sexual behaviour-in Drosophila melanogaster, and measured lifespan under varying social conditions. Consistent with previous studies, masculinization of the nervous system in females induced male-specific courtship behaviour and aggression, while nervous system feminization in males induced male-male courtship and reduced aggression. Control females outlived males, but masculinized female groups displayed male-like lifespans and male-like costs of group living. By varying the mixture of control and masculinized females within social groups, we show that male-specific behaviours are costly to recipients, even when received from females. However, consistent with recent findings, our data suggest courtship expression to be surprisingly low cost. Overall, our study indicates that nervous system-mediated expression of sex-specific behaviour per se-independent of wider physiological differences between the sexes, or the receipt of aggression or courtship-plays a limited role in mediating sex differences in lifespan.


Asunto(s)
Drosophila melanogaster/fisiología , Conducta Sexual Animal/fisiología , Animales , Longevidad/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Caracteres Sexuales , Factores Sexuales , Conducta Social
18.
Proc Biol Sci ; 285(1892)2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487311

RESUMEN

Understanding what factors modulate sexual selection intensity is crucial to a wide variety of evolutionary processes. Recent studies show that perception of sex pheromones can severely impact male mortality when it is not followed by mating (perception costs of reproduction). Here, we examine the idea that this may magnify sexual selection by further decreasing the fitness of males with inherently low mating success, hence increasing the opportunity for sexual selection. We use mathematical modelling to show that even modest mortality perception costs can significantly increase variability in male reproductive success under a wide range of demographic conditions. We then conduct a series of assays suggesting that, in Drosophila melanogaster, failure to reproduce early in life may, via perception costs of reproduction, significantly reduces the subsequent fitness of males (ca 25%), due mostly to increased reproductive ageing. Altogether, our results strongly suggest that perception costs of reproduction can magnify sexual selection in a biologically significant way. Finally, we estimate that around 29% of available studies quantify sexual selection based on short-term fitness estimates that may fail to capture these effects (if they were present in their subject species), and suggest addressing the existence and impact of perception costs of reproduction across taxa should thus be a priority.


Asunto(s)
Envejecimiento , Drosophila melanogaster/fisiología , Fertilidad , Preferencia en el Apareamiento Animal , Animales , Evolución Biológica , Femenino , Masculino , Modelos Biológicos , Reproducción
19.
Evolution ; 72(3): 540-552, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29336481

RESUMEN

Sex differences in ageing and lifespan are ubiquitous in nature. The "unguarded-X" hypothesis (UXh) suggests they may be partly due to the expression of recessive mutations in the hemizygous sex chromosomes of the heterogametic sex, which could help explain sex-specific ageing in a broad array of taxa. A prediction central to the UX hypothesis is that inbreeding will decrease the lifespan of the homogametic sex more than the heterogametic sex, because only in the former does inbreeding increase the expression of recessive deleterious mutations. In this study, we test this prediction by examining the effects of inbreeding on the lifespan and fitness of male and female Drosophila melanogaster across different social environments. We found that, across social environments, inbreeding resulted in a greater reduction of female than male lifespan, and that inbreeding effects on fitness did not seem to counterbalance sex-specific effects on lifespan, suggesting the former are maladaptative. Inter- and intra-sexual correlation analyses also allowed us to identify evidence of an underlying joint genetic architecture for inbreeding effects on lifespan. We discuss these results in light of the UXh and other alternative explanations, and suggest that more attention should be paid to the possibility that the "unguarded-X" may play an important role in the evolution of sex-specific lifespan.


Asunto(s)
Adaptación Biológica , Drosophila melanogaster/fisiología , Longevidad/genética , Animales , Drosophila melanogaster/genética , Femenino , Endogamia , Masculino , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...