Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38854156

RESUMEN

Background: Identifying regional wall motion abnormalities (RWMAs) is critical for diagnosing and risk stratifying patients with cardiovascular disease, particularly ischemic heart disease. We hypothesized that a deep neural network could accurately identify patients with regional wall motion abnormalities from a readily available standard 12-lead electrocardiogram (ECG). Methods: This observational, retrospective study included patients who were treated at Beth Israel Deaconess Medical Center and had an ECG and echocardiogram performed within 14 days of each other between 2008 and 2019. We trained a convolutional neural network to detect the presence of RWMAs, qualitative global right ventricular (RV) hypokinesis, and varying degrees of left ventricular dysfunction (left ventricular ejection fraction [LVEF] ≤50%, LVEF ≤40%, and LVEF ≤35%) identified by echocardiography, using ECG data alone. Patients were randomly split into development (80%) and test sets (20%). Model performance was assessed using area under the receiver operating characteristic curve (AUC). Cox proportional hazard models adjusted for age and sex were performed to estimate the risk of future acute coronary events. Results: The development set consisted of 19,837 patients (mean age 66.7±16.4; 46.7% female) and the test set comprised of 4,953 patients (mean age 67.5±15.8 years; 46.5% female). On the test dataset, the model accurately identified the presence of RWMA, RV hypokinesis, LVEF ≤50%, LVEF ≤40%, and LVEF ≤35% with AUCs of 0.87 (95% CI 0.858-0.882), 0.888 (95% CI 0.878-0.899), 0.923 (95% CI 0.914-0.933), 0.93 (95% CI 0.921-0.939), and 0.876 (95% CI 0.858-0.896), respectively. Among patients with normal biventricular function at the time of the index ECG, those classified as having RMWA by the model were 3 times the risk (age- and sex-adjusted hazard ratio, 2.8; 95% CI 1.9-3.9) for future acute coronary events compared to those classified as negative. Conclusions: We demonstrate that a deep neural network can help identify regional wall motion abnormalities and reduced LV function from a 12-lead ECG and could potentially be used as a screening tool for triaging patients who need either initial or repeat echocardiographic imaging.

2.
Eur Heart J Digit Health ; 3(2): 208-217, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36713004

RESUMEN

Aims: Atrial fibrillation (AF) is associated with significant morbidity but remains underdiagnosed. A 24 h ambulatory electrocardiogram (ECG) is largely used as a tool to document AF but yield remains limited. We hypothesize that a deep learning model can identify patients at risk of AF in the 2 weeks following a 24 h ambulatory ECG with no documented AF. Methods and results: We identified a training set of Holter recordings of 7-15 days duration, in which no AF could be found in the first 24 h. We trained a neural network to predict the presence or absence of AF in the 15 following days, using only the first 24 h of the recording. We evaluated the neural network on a testing set and an external data set not used during algorithm development. In the testing data set, out of 9993 Holters with no AF on the first day, we found 361 (4%) recordings with AF within the 15 subsequent days of monitoring [5808, 218 (4%), respectively in the external data set]. The neural network could discriminate future AF with an area under the receiver operating curve, a sensitivity, and specificity of 79.4%, 76%, and 69%, respectively (75.8%, 78%, and 58% in the external data set), and outperformed ECG features previously shown to be predictive of AF. Conclusion: We show here the very first study of short-term AF prediction using 24 h Holter monitoring. This could help identify patients who would benefit the most from longer recordings and proactively initiate treatment and AF mitigation strategies in high-risk patients.

3.
Circulation ; 143(13): 1287-1298, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33588584

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is associated with substantial morbidity, especially when it goes undetected. If new-onset AF could be predicted, targeted screening could be used to find it early. We hypothesized that a deep neural network could predict new-onset AF from the resting 12-lead ECG and that this prediction may help identify those at risk of AF-related stroke. METHODS: We used 1.6 M resting 12-lead digital ECG traces from 430 000 patients collected from 1984 to 2019. Deep neural networks were trained to predict new-onset AF (within 1 year) in patients without a history of AF. Performance was evaluated using areas under the receiver operating characteristic curve and precision-recall curve. We performed an incidence-free survival analysis for a period of 30 years following the ECG stratified by model predictions. To simulate real-world deployment, we trained a separate model using all ECGs before 2010 and evaluated model performance on a test set of ECGs from 2010 through 2014 that were linked to our stroke registry. We identified the patients at risk for AF-related stroke among those predicted to be high risk for AF by the model at different prediction thresholds. RESULTS: The area under the receiver operating characteristic curve and area under the precision-recall curve were 0.85 and 0.22, respectively, for predicting new-onset AF within 1 year of an ECG. The hazard ratio for the predicted high- versus low-risk groups over a 30-year span was 7.2 (95% CI, 6.9-7.6). In a simulated deployment scenario, the model predicted new-onset AF at 1 year with a sensitivity of 69% and specificity of 81%. The number needed to screen to find 1 new case of AF was 9. This model predicted patients at high risk for new-onset AF in 62% of all patients who experienced an AF-related stroke within 3 years of the index ECG. CONCLUSIONS: Deep learning can predict new-onset AF from the 12-lead ECG in patients with no previous history of AF. This prediction may help identify patients at risk for AF-related strokes.


Asunto(s)
Fibrilación Atrial/diagnóstico , Aprendizaje Profundo/normas , Accidente Cerebrovascular/etiología , Fibrilación Atrial/complicaciones , Electrocardiografía , Femenino , Humanos , Masculino , Redes Neurales de la Computación , Accidente Cerebrovascular/mortalidad , Análisis de Supervivencia
4.
Nat Med ; 26(6): 886-891, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32393799

RESUMEN

The electrocardiogram (ECG) is a widely used medical test, consisting of voltage versus time traces collected from surface recordings over the heart1. Here we hypothesized that a deep neural network (DNN) can predict an important future clinical event, 1-year all-cause mortality, from ECG voltage-time traces. By using ECGs collected over a 34-year period in a large regional health system, we trained a DNN with 1,169,662 12-lead resting ECGs obtained from 253,397 patients, in which 99,371 events occurred. The model achieved an area under the curve (AUC) of 0.88 on a held-out test set of 168,914 patients, in which 14,207 events occurred. Even within the large subset of patients (n = 45,285) with ECGs interpreted as 'normal' by a physician, the performance of the model in predicting 1-year mortality remained high (AUC = 0.85). A blinded survey of cardiologists demonstrated that many of the discriminating features of these normal ECGs were not apparent to expert reviewers. Finally, a Cox proportional-hazard model revealed a hazard ratio of 9.5 (P < 0.005) for the two predicted groups (dead versus alive 1 year after ECG) over a 25-year follow-up period. These results show that deep learning can add substantial prognostic information to the interpretation of 12-lead resting ECGs, even in cases that are interpreted as normal by physicians.


Asunto(s)
Aprendizaje Profundo , Electrocardiografía , Mortalidad , Medición de Riesgo , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Área Bajo la Curva , Cardiólogos , Causas de Muerte , Femenino , Humanos , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Pronóstico , Modelos de Riesgos Proporcionales , Curva ROC , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA