Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(39): 16080-16088, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37750836

RESUMEN

Dimensionality can strongly influence the magnetic structure of solid systems. Here, we predict theoretically and confirm experimentally that the antiferromagnetic (AFM) ground state of bulk gadolinium germanide metalloxene, which has a quasi-layered defective GdGe2 structure, is preserved in the ultrathin film limit. Ab initio calculations demonstrate that ultrathin GdGe2 films present in-plane intra-layer ferromagnetic coupling and AFM inter-layer coupling in the ground state. Angle-resolved photoemission spectroscopy finds the AFM-induced band splitting expected for the 2 and 3 GdGe2 trilayer (TL) films, which disappear above the Néel temperature. The comparative analysis of isostructural ultrathin DyGe2 and GdSi2 films confirms the magnetic origin of the observed band splitting. These findings are in contrast with the recent report of ferromagnetism in ultrathin metalloxene films, which we ascribe to the presence of uncompensated magnetic moments.

2.
Nano Lett ; 23(14): 6277-6283, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37459226

RESUMEN

Topological insulators are bulk insulators with metallic and fully spin-polarized surface states displaying Dirac-like band dispersion. Due to spin-momentum locking, these topological surface states (TSSs) have a predominant in-plane spin polarization in the bulk fundamental gap. Here, we show by spin-resolved photoemission spectroscopy that the TSS of a topological insulator interfaced with an antimonene bilayer exhibits nearly full out-of-plane spin polarization within the substrate gap. We connect this phenomenon to a symmetry-protected band crossing of the spin-polarized surface states. The nearly full out-of-plane spin polarization of the TSS occurs along a continuous path in the energy-momentum space, and the spin polarization within the gap can be reversibly tuned from nearly full out-of-plane to nearly full in-plane by electron doping. These findings pave the way to advanced spintronics applications that exploit the giant out-of-plane spin polarization of TSSs.

3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768597

RESUMEN

The concentration dependence of the surface tension of several binary mixtures of non-electrolytes has been measured at 298.15 K. The mixtures have been chosen since they presented a so-called "W-shape" concentration dependence of the excess constant pressure heat capacity and high values of the concentration-concentration correlation function. This behavior was interpreted in terms of the existence of anomalously high concentration fluctuations that resemble those existing in the proximities of critical points. However, no liquid-liquid phase separation has been found in any of these mixtures over a wide temperature range. In this work, we have extended these studies to the liquid-air interfacial properties. The results show that the concentration dependence of the surface tension shows a plateau and the mixing surface tension presents a "W-shape" behavior. To the best of our knowledge, this is the first time that this behavior is reported. The weak anomalies of the surface tension near a liquid-liquid critical point suggest that the results obtained cannot be considered far-from-critical effects. The usual approach of substituting the activity by the concentration in the Gibbs equation for the relative surface concentration has been found to lead to large errors and the mixtures to have a fuzzy and thick liquid/vapor interface.


Asunto(s)
Calor , Tensión Superficial
4.
Diagnostics (Basel) ; 14(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38201395

RESUMEN

A significant proportion of patients presenting with signs and symptoms of myocardial ischemia have no "significant" epicardial disease; thereby, the assessment of coronary microcirculation gained an important role in improving diagnosis and guiding therapy. In fact, coronary microvascular dysfunction (CMD) could be found in a large proportion of these patients, supporting both symptoms and signs of myocardial ischemia. However, CMD represents a diagnostic challenge for two main reasons: (1) the small dimension of the coronary microvasculature prevents direct angiographic visualization, and (2) despite the availability of specific diagnostic tools, they remain invasive and underused in the current clinical practice. For these reasons, CMD remains underdiagnosed, and most of the patients remain with no specific treatment and quality-of-life-limiting symptoms. Of note, recent evidence suggests that a "full physiology" approach for the assessment of the whole coronary vasculature may offer a significant benefit in terms of symptom improvement among patients presenting with ischemia and non-obstructive coronary artery disease. We analyze the pathophysiology of coronary microvascular dysfunction, providing the readers with a guide for the invasive assessment of coronary microcirculation, together with the available evidence supporting its use in clinical practice.

5.
ACS Nano ; 16(7): 11182-11193, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35770912

RESUMEN

We report on the magnetic properties of Dy atoms adsorbed on the (001) surface of SrTiO3. X-ray magnetic circular dichroism reveals slow relaxation of the Dy magnetization on a time scale of about 800 s at 2.5 K, unusually associated with an easy-plane magnetic anisotropy. We attribute these properties to Dy atoms occupying hollow adsorption sites on the TiO2-terminated surface. Conversely, Ho atoms adsorbed on the same surface show paramagnetic behavior down to 2.5 K. With the help of atomic multiplet simulations and first-principles calculations, we establish that Dy populates also the top-O and bridge sites on the coexisting SrO-terminated surface. A simple magnetization relaxation model predicts these two sites to have an even longer magnetization lifetime than the hollow site. Moreover, the adsorption of Dy on the insulating SrTiO3 crystal leads, regardless of the surface termination, to the formation of a spin-polarized two-dimensional electron gas of Ti 3dxy character, together with an antiferromagnetic Dy-Ti coupling. Our findings support the feasibility of tuning the magnetic properties of the rare-earth atoms by acting on the substrate electronic gas with electric fields.

6.
Polymers (Basel) ; 13(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209021

RESUMEN

The aim of this paper was to provide insight into the impact of matrix and surfactants on the rheology, morphology, and dielectric and piezoelectric properties of screen-printed BaTiO3/PVDF composites. Two matrices were compared (PVDF-HFP and PVDF-TrFE), and lead-free BaTiO3 microparticles were added in volume fractions of 30% and 60%. Here, we demonstrated that the presence of surfactants, helping to prevent phase separation, was crucial for achieving a decent screen-printing process. Fourier-transform infrared (FTIR) spectroscopy together with scanning electron microscopy (SEM) showed that the two "fluoro-benzoic acid" surfactants established stable bonds with BaTiO3 and improved the dispersion homogeneity, while the "fluoro-silane" proved to be ineffective due to it evaporating during the functionalization process. PVDF-TrFE composites featured a more homogeneous composite layer, with fewer flaws and lower roughness, as compared with PVDF-HFP composites, and their inks were characterized by a higher viscosity. The samples were polarized in either AC or DC mode, at two different temperatures (25 °C and 80 °C). The 30% BaTiO3 PVDF-TrFE composites with two fluorinated surfactants featured a higher value of permittivity. The choice of the surfactant did not affect the permittivity of the PVDF-HFP composites. Concerning the d33 piezoelectric coefficient, experimental results pointed out that PVDF-TrFE matrices made it possible to obtain higher values, and that the best results were achieved in the absence of surfactants (or by employing the fluoro-silane). For instance, in the composites with 60% BaTiO3 and polarized at 80 °C, a d33 of 7-8 pC/N was measured, which is higher than the values reported in the literature.

7.
ACS Nano ; 13(9): 10481-10489, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31469534

RESUMEN

We report the discovery of a temperature-induced phase transition between the α and ß structures of antimonene. When antimony is deposited at room temperature on bismuth selenide, it forms domains of α-antimonene having different orientations with respect to the substrate. During a mild annealing, the ß phase grows and prevails over the α phase, eventually forming a single domain that perfectly matches the surface lattice structure of bismuth selenide. First-principles thermodynamics calculations of this van der Waals heterostructure explain the different temperature-dependent stability of the two phases and reveal a minimum energy transition path. Although the formation energies of freestanding α- and ß-antimonene only slightly differ, the ß phase is ultimately favored in the annealed heterostructure due to an increased interaction with the substrate mediated by the perfect lattice match.

8.
Nat Commun ; 10(1): 2610, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197169

RESUMEN

Localized electron spins can couple magnetically via the Ruderman-Kittel-Kasuya-Yosida interaction even if their wave functions lack direct overlap. Theory predicts that spin-orbit scattering leads to a Dzyaloshinskii-Moriya type enhancement of this indirect exchange interaction, giving rise to chiral exchange terms. Here we present a combined spin-polarized scanning tunneling microscopy, angle-resolved photoemission, and density functional theory study of MnO2 chains on Ir(100). Whereas we find antiferromagnetic Mn-Mn coupling along the chain, the inter-chain coupling across the non-magnetic Ir substrate turns out to be chiral with a 120° rotation between adjacent MnO2 chains. Calculations reveal that the Dzyaloshinskii-Moriya interaction results in spin spirals with a periodicity in agreement with experiment. Our findings confirm the existence of indirect chiral magnetic exchange, potentially giving rise to exotic phenomena, such as chiral spin-liquid states in spin ice systems or the emergence of new quasiparticles.

9.
ACS Nano ; 11(1): 975-982, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28032977

RESUMEN

Silicene, a honeycomb lattice of silicon, presents a particular case of allotropism on Ag(111). Silicene forms multiple structures with alike in-plane geometry but different out-of-plane atomic buckling and registry to the substrate. Angle-resolved photoemission and first-principles calculations show that these silicene structures, with (4×4), (√13×√13)R13.9°, and (2√3×2√3)R30° lattice periodicity, display similar electronic bands despite the structural differences. In all cases the interaction with the substrate modifies the electronic states, which significantly differ from those of free-standing silicene. Complex photoemission patterns arise from surface umklapp processes, varying according to the periodicity of the silicene allotropes.

10.
ACS Nano ; 10(1): 1101-7, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26588469

RESUMEN

We report on the magnetic coupling between isolated Co atoms as well as small Co islands and Ni(111) mediated by an epitaxial graphene layer. X-ray magnetic circular dichroism and scanning tunneling microscopy combined with density functional theory calculations reveal that Co atoms occupy two distinct adsorption sites, with different magnetic coupling to the underlying Ni(111) surface. We further report a transition from an antiferromagnetic to a ferromagnetic coupling with increasing Co cluster size. Our results highlight the extreme sensitivity of the exchange interaction mediated by graphene to the adsorption site and to the in-plane coordination of the magnetic atoms.

11.
J Am Chem Soc ; 136(14): 5451-9, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24635343

RESUMEN

The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state.


Asunto(s)
Electrones , Indoles/química , Metales Alcalinos/química , Metales Pesados/química , Compuestos Organometálicos/química , Dicroismo Circular , Isoindoles , Microscopía de Túnel de Rastreo , Espectroscopía de Absorción de Rayos X
12.
ACS Nano ; 6(10): 9299-304, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23020302

RESUMEN

By combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy we reveal the structural and electronic properties of multilayer graphene on Ru(0001). We prove that large ethylene exposure allows the synthesis of two distinct phases of bilayer graphene with different properties. The first phase has Bernal AB stacking with respect to the first graphene layer and displays weak vertical interaction and electron doping. The long-range ordered moiré pattern modulates the crystal potential and induces replicas of the Dirac cone and minigaps. The second phase has an AA stacking sequence with respect to the first layer and displays weak structural and electronic modulation and p-doping. The linearly dispersing Dirac state reveals the nearly freestanding character of this novel second-layer phase.


Asunto(s)
Cristalización/métodos , Grafito/química , Membranas Artificiales , Nanoestructuras/química , Nanoestructuras/ultraestructura , Rubidio/química , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Transición de Fase , Propiedades de Superficie
13.
ACS Nano ; 6(1): 199-204, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22136502

RESUMEN

We investigate the effects of Na adsorption on the electronic structure of bare and Ir cluster superlattice-covered epitaxial graphene on Ir(111) using angle-resolved photoemission spectroscopy and scanning tunneling microscopy. At Na saturation coverage, a massive charge migration from sodium atoms to graphene raises the graphene Fermi level by ~1.4 eV relative to its neutrality point. We find that Na is adsorbed on top of the graphene layer, and when coadsorbed onto an Ir cluster superlattice, it results in the opening of a large band gap of Δ(Na/Ir/G) = 740 meV, comparable to the one of Ge and with preserved high group velocity of the charge carriers.


Asunto(s)
Grafito/química , Iridio/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Sodio/química , Adsorción , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Semiconductores , Propiedades de Superficie
14.
Chem Commun (Camb) ; 48(4): 534-6, 2012 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-22073390

RESUMEN

The possibility of modifying the intermolecular interactions of absorbed benzene-carboxylic acids from coordination to hydrogen bonding by changing their surface coverage is demonstrated through a combination of scanning tunnelling microscopy, X-ray photoemission spectroscopy and density functional theory calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...