Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(5): 1148-1156.e7, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38367618

RESUMEN

Understanding how symbiotic associations differ across environmental gradients is key to predicting the fate of symbioses as environments change, and it is vital for detecting global reservoirs of symbiont biodiversity in a changing world.1,2,3 However, sampling of symbiotic partners at the full-biome scale is difficult and rare. As Earth's largest terrestrial biome, boreal forests influence carbon dynamics and climate regulation at a planetary scale. Plants and lichens in this biome host the highest known phylogenetic diversity of fungal endophytes, which occur within healthy photosynthetic tissues and can influence hosts' resilience to stress.4,5 We examined how communities of endophytes are structured across the climate gradient of the boreal biome, focusing on the dominant plant and lichen species occurring across the entire south-to-north span of the boreal zone in eastern North America. Although often invoked for understanding the distribution of biodiversity, neither a latitudinal gradient nor mid-domain effect5,6,7 can explain variation in endophyte diversity at this trans-biome scale. Instead, analyses considering shifts in forest characteristics, Picea biomass and age, and nutrients in host tissues from 46° to 58° N reveal strong and distinctive signatures of climate in defining endophyte assemblages in each host lineage. Host breadth of endophytes varies with climate factors, and biodiversity hotspots can be identified at plant-community transitions across the boreal zone at a global scale. Placed against a backdrop of global circumboreal sampling,4 our study reveals the sensitivity of endophytic fungi, their reservoirs of biodiversity, and their important symbiotic associations, to climate.


Asunto(s)
Endófitos , Líquenes , Endófitos/fisiología , Filogenia , Ecosistema , Simbiosis , Biodiversidad , Plantas/microbiología
2.
Front Microbiol ; 14: 1163566, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303798

RESUMEN

Cassava is a root crop important for global food security and the third biggest source of calories on the African continent. Cassava production is threatened by Cassava mosaic disease (CMD), which is caused by a complex of single-stranded DNA viruses (family: Geminiviridae, genus: Begomovirus) that are transmitted by the sweet potato whitefly (Bemisia tabaci). Understanding the dynamics of different cassava mosaic begomovirus (CMB) species through time is important for contextualizing disease trends. Cassava plants with CMD symptoms were sampled in Lake Victoria and coastal regions of Kenya before transfer to a greenhouse setting and regular propagation. The field-collected and greenhouse samples were sequenced using Illumina short-read sequencing and analyzed on the Galaxy platform. In the field-collected samples, African cassava mosaic virus (ACMV), East African cassava mosaic virus (EACMV), East African cassava mosaic Kenya virus (EACMKV), and East African cassava mosaic virus-Uganda variant (EACMV-Ug) were detected in samples from the Lake Victoria region, while EACMV and East African mosaic Zanzibar virus (EACMZV) were found in the coastal region. Many of the field-collected samples had mixed infections of EACMV and another begomovirus. After 3 years of regrowth in the greenhouse, only EACMV-like viruses were detected in all samples. The results suggest that in these samples, EACMV becomes the dominant virus through vegetative propagation in a greenhouse. This differed from whitefly transmission results. Cassava plants were inoculated with ACMV and another EACMV-like virus, East African cassava mosaic Cameroon virus (EACMCV). Only ACMV was transmitted by whiteflies from these plants to recipient plants, as indicated by sequencing reads and copy number data. These results suggest that whitefly transmission and vegetative transmission lead to different outcomes for ACMV and EACMV-like viruses.

3.
PLoS One ; 18(4): e0283540, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37011062

RESUMEN

Phytophthora species cause severe diseases on food, forest, and ornamental crops. Since the genus was described in 1876, it has expanded to comprise over 190 formally described species. There is a need for an open access phylogenetic tool that centralizes diverse streams of sequence data and metadata to facilitate research and identification of Phytophthora species. We used the Tree-Based Alignment Selector Toolkit (T-BAS) to develop a phylogeny of 192 formally described species and 33 informal taxa in the genus Phytophthora using sequences of eight nuclear genes. The phylogenetic tree was inferred using the RAxML maximum likelihood program. A search engine was also developed to identify microsatellite genotypes of P. infestans based on genetic distance to known lineages. The T-BAS tool provides a visualization framework allowing users to place unknown isolates on a curated phylogeny of all Phytophthora species. Critically, the tree can be updated in real-time as new species are described. The tool contains metadata including clade, host species, substrate, sexual characteristics, distribution, and reference literature, which can be visualized on the tree and downloaded for other uses. This phylogenetic resource will allow data sharing among research groups and the database will enable the global Phytophthora community to upload sequences and determine the phylogenetic placement of an isolate within the larger phylogeny and to download sequence data and metadata. The database will be curated by a community of Phytophthora researchers and housed on the T-BAS web portal in the Center for Integrated Fungal Research at NC State. The T-BAS web tool can be leveraged to create similar metadata enhanced phylogenies for other Oomycete, bacterial or fungal pathogens.


Asunto(s)
Phytophthora , Filogenia , Phytophthora/genética , Genotipo
4.
Syst Biol ; 72(3): 694-712, 2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-36827095

RESUMEN

Prokaryotic genomes are often considered to be mosaics of genes that do not necessarily share the same evolutionary history due to widespread horizontal gene transfers (HGTs). Consequently, representing evolutionary relationships of prokaryotes as bifurcating trees has long been controversial. However, studies reporting conflicts among gene trees derived from phylogenomic data sets have shown that these conflicts can be the result of artifacts or evolutionary processes other than HGT, such as incomplete lineage sorting, low phylogenetic signal, and systematic errors due to substitution model misspecification. Here, we present the results of an extensive exploration of phylogenetic conflicts in the cyanobacterial order Nostocales, for which previous studies have inferred strongly supported conflicting relationships when using different concatenated phylogenomic data sets. We found that most of these conflicts are concentrated in deep clusters of short internodes of the Nostocales phylogeny, where the great majority of individual genes have low resolving power. We then inferred phylogenetic networks to detect HGT events while also accounting for incomplete lineage sorting. Our results indicate that most conflicts among gene trees are likely due to incomplete lineage sorting linked to an ancient rapid radiation, rather than to HGTs. Moreover, the short internodes of this radiation fit the expectations of the anomaly zone, i.e., a region of the tree parameter space where a species tree is discordant with its most likely gene tree. We demonstrated that concatenation of different sets of loci can recover up to 17 distinct and well-supported relationships within the putative anomaly zone of Nostocales, corresponding to the observed conflicts among well-supported trees based on concatenated data sets from previous studies. Our findings highlight the important role of rapid radiations as a potential cause of strongly conflicting phylogenetic relationships when using phylogenomic data sets of bacteria. We propose that polytomies may be the most appropriate phylogenetic representation of these rapid radiations that are part of anomaly zones, especially when all possible genomic markers have been considered to infer these phylogenies. [Anomaly zone; bacteria; horizontal gene transfer; incomplete lineage sorting; Nostocales; phylogenomic conflict; rapid radiation; Rhizonema.].


Asunto(s)
Cianobacterias , Genoma , Filogenia , Evolución Biológica , Células Procariotas , Cianobacterias/genética
5.
Microbiol Resour Announc ; 11(11): e0066322, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36200901

RESUMEN

Community composition and recruitment are important elements of plant-microbe interactions and may provide insights for plant development and resilience. The results of 16S rRNA amplicon sequencing from four rhizocompartments for four wheat cultivars grown under controlled conditions and sampled after flag leaf emergence are provided. Data demonstrate differences in microbial communities according to rhizocompartment.

6.
PLoS One ; 17(10): e0276556, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36301851

RESUMEN

Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonaflatoxigenic A. flavus strains, either Afla-Guard (member of lineage IB) or AF36 (lineage IC). We used genotyping-by-sequencing to examine the influence of both biocontrol agents on native populations of A. flavus in cornfields in Texas, North Carolina, Arkansas, and Indiana. This study examined up to 27,529 single-nucleotide polymorphisms (SNPs) in a total of 815 A. flavus isolates, and 353 genome-wide haplotypes sampled before biocontrol application, three months after biocontrol application, and up to three years after initial application. Here, we report that the two distinct A. flavus evolutionary lineages IB and IC differ significantly in their frequency distributions across states. We provide evidence of increased unidirectional gene flow from lineage IB into IC, inferred to be due to the applied Afla-Guard biocontrol strain. Genetic exchange and recombination of biocontrol strains with native strains was detected in as little as three months after biocontrol application and up to one and three years later. There was limited inter-lineage migration in the untreated fields. These findings suggest that biocontrol products that include strains from lineage IB offer the greatest potential for sustained reductions in aflatoxin levels over several years. This knowledge has important implications for developing new biocontrol strategies.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/genética , Aflatoxinas/genética , Agentes de Control Biológico , Zea mays/genética , Zea mays/microbiología , Recombinación Genética
7.
PLoS Comput Biol ; 18(8): e1010422, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35984849

RESUMEN

Movement of individuals between populations or demes is often restricted, especially between geographically isolated populations. The structured coalescent provides an elegant theoretical framework for describing how movement between populations shapes the genealogical history of sampled individuals and thereby structures genetic variation within and between populations. However, in the presence of recombination an individual may inherit different regions of their genome from different parents, resulting in a mosaic of genealogical histories across the genome, which can be represented by an Ancestral Recombination Graph (ARG). In this case, different genomic regions may have different ancestral histories and so different histories of movement between populations. Recombination therefore poses an additional challenge to phylogeographic methods that aim to reconstruct the movement of individuals from genealogies, although also a potential benefit in that different loci may contain additional information about movement. Here, we introduce the Structured Coalescent with Ancestral Recombination (SCAR) model, which builds on recent approximations to the structured coalescent by incorporating recombination into the ancestry of sampled individuals. The SCAR model allows us to infer how the migration history of sampled individuals varies across the genome from ARGs, and improves estimation of key population genetic parameters such as population sizes, recombination rates and migration rates. Using the SCAR model, we explore the potential and limitations of phylogeographic inference using full ARGs. We then apply the SCAR to lineages of the recombining fungus Aspergillus flavus sampled across the United States to explore patterns of recombination and migration across the genome.


Asunto(s)
Genoma , Modelos Genéticos , Genética de Población , Humanos , Filogeografía , Densidad de Población , Recombinación Genética/genética
8.
Data Brief ; 42: 108033, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35330736

RESUMEN

Information on the transcriptomic changes that occur within sclerotia of Aspergillus flavus during its sexual cycle is very limited and warrants further research. The findings will broaden our knowledge of the biology of A. flavus and can provide valuable insights in the development or deployment of non-toxigenic strains as biocontrol agents against aflatoxigenic strains. This article presents transcriptomic datasets included in our research article entitled, "Development of sexual structures influences metabolomic and transcriptomic profiles in Aspergillus flavus" [1], which utilized transcriptomics to identify possible genes and gene clusters associated with sexual reproduction and fertilization in A. flavus. RNA was extracted from sclerotia of a high fertility cross (Hi-Fert-Mated), a low fertility cross (Lo-Fert-Mated), and unmated strains (Hi-Fert-Unmated and Lo-Fert-Unmated) of A. flavus collected immediately after crossing and at every two weeks until eight weeks of incubation on mixed cereal agar at 30 °C in continuous darkness (n = 4 replicates from each treatment for each time point; 80 total). Raw sequencing reads obtained on an Illumina NovaSeq 6000 were deposited in NCBI's Sequence Read Archive (SRA) repository under BioProject accession number PRJNA789260. Reads were mapped to the A. flavus NRRL 3357 genome (assembly JCVI-afl1-v2.0; GCA_000006275.2) using STAR software. Differential gene expression analyses, functional analyses, and weighted gene co-expression network analysis were performed using DESeq2 R packages. The raw and analyzed data presented in this article could be reused for comparisons with other datasets to obtain transcriptional differences among strains of A. flavus or closely related species. The data can also be used for further investigation of the molecular basis of different processes involved in sexual reproduction and sclerotia fertility in A. flavus.

9.
Fungal Biol ; 126(3): 187-200, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35183336

RESUMEN

Sclerotium (female) fertility, the ability of a strain to produce ascocarps, influences internal morphological changes during sexual reproduction in Aspergillus flavus. Although sclerotial morphogenesis has been linked to secondary metabolite (SM) biosynthesis, metabolic and transcriptomic changes within A. flavus sclerotia during sexual development are not known. Successful mating between compatible strains may result in relatively high or low numbers of ascocarps being produced. Sclerotia from a high fertility cross (Hi-Fert-Mated), a low fertility cross (Lo-Fert-Mated), unmated strains (Hi-Fert-Unmated and Lo-Fert-Unmated) were harvested immediately after crosses were made and every two weeks until 8 weeks of incubation, then subjected to targeted metabolomics (n = 106) and transcriptomics analyses (n = 80). Aflatoxin B1 production varied between Hi-Fert-Mated and Hi-Fert-Unmated sclerotia, while it remained low or was undetected in Lo-Fert-Mated and Lo-Fert-Unmated sclerotia. Profiling of 14 SMs showed elevated production of an aflavazole analog, an aflavinine isomer, and hydroxyaflavinine in Hi-Fert-Mated sclerotia at 4 to 8 weeks. Similarly, genes ayg1, hxtA, MAT1, asd-3, preA and preB, and genes in uncharacterized SM gene clusters 30 and 44 showed increased expression in Hi-Fert-Mated sclerotia at these time points. These results broaden our knowledge of the biochemical and transcriptional processes during sexual development in A. flavus.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Aflatoxinas/metabolismo , Perfilación de la Expresión Génica , Metabolómica , Reproducción/genética , Transcriptoma
10.
Plant Dis ; 106(3): 906-917, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34735283

RESUMEN

Host resistance is an important tool in the management of black shank disease of tobacco. Race development leads to rapid loss of single-gene resistance, but the adaptation by Phytophthora nicotianae to sources of partial resistance from Beinhart 1000, Florida 301, and the Wz gene region introgressed from Nicotiana rustica is poorly characterized. In greenhouse environments, host genotypes with quantitative trait loci (QTLs) conferring resistance from multiple sources were initially inoculated with an aggressive isolate of race 0 or race 1 of P. nicotianae. The most aggressive isolate was selected after each of six host generations to inoculate the next generation of plants. The race 0 isolate demonstrated a continuous gradual increase in disease severity and percentage root rot on all sources of resistance except the genotype K 326 Wz/-, where a large increase in both was observed between generations 2 and 3. Adaptation by the race 0 isolate on Beinhart 1000 represents the first report of adaptation to this genotype by P. nicotianae. The race 1 isolate did not exhibit significant increases in aggressiveness over generations but exhibited a large increase in aggressiveness on K 326 Wz/- between generations 3 and 4. Molecular characterization of isolates recovered during selection was completed via double digest restriction-site associated DNA sequencing, but no polymorphisms were associated with the observed changes in aggressiveness. The rapid adaptation to Wz resistance and the gradual adaptation to other QTLs highlights the need to study the nature of Wz resistance and to conduct field studies on the efficacy of resistance gene rotation for disease management.


Asunto(s)
Phytophthora , Genotipo , Phytophthora/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo/genética , Nicotiana/genética
11.
J Virol Methods ; 300: 114405, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34896458

RESUMEN

The ability of begomoviruses to evolve rapidly threatens many crops and underscores the importance of detecting these viruses quickly and to understand their genome diversity. This study presents an improved protocol for the enhanced amplification and enrichment of begomovirus DNA for use in next generation sequencing of the viral genomes. An enhanced rolling circle amplification (RCA) method using EquiPhi29 polymerase was combined with size selection to generate a cost-effective, short-read sequencing method. This improved short-read sequencing produced at least 50 % of the reads mapping to the target viral reference genomes, African cassava mosaic virus and East African cassava mosaic virus. This study provided other insights into common misconceptions about RCA and lessons that could be learned from the sequencing of single-stranded DNA virus genomes. This protocol can be used to examine the viral DNA as it moves from host to vector, thus producing valuable information for viral DNA population studies, and would likely work well with other circular Rep-encoding ssDNA viruses (CRESS) DNA viruses.


Asunto(s)
Virus ADN , ADN Circular , Genoma Viral , Virus ADN/genética , ADN Circular/genética , ADN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento
12.
J Gen Virol ; 102(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34310272

RESUMEN

Cassava mosaic disease (CMD) represents a serious threat to cassava, a major root crop for more than 300 million Africans. CMD is caused by single-stranded DNA begomoviruses that evolve rapidly, making it challenging to develop durable disease resistance. In addition to the evolutionary forces of mutation, recombination and reassortment, factors such as climate, agriculture practices and the presence of DNA satellites may impact viral diversity. To gain insight into the factors that alter and shape viral diversity in planta, we used high-throughput sequencing to characterize the accumulation of nucleotide diversity after inoculation of infectious clones corresponding to African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in the susceptible cassava landrace Kibandameno. We found that vegetative propagation had a significant effect on viral nucleotide diversity, while temperature and a satellite DNA did not have measurable impacts in our study. EACMCV diversity increased linearly with the number of vegetative propagation passages, while ACMV diversity increased for a time and then decreased in later passages. We observed a substitution bias toward C→T and G→A for mutations in the viral genomes consistent with field isolates. Non-coding regions excluding the promoter regions of genes showed the highest levels of nucleotide diversity for each genome component. Changes in the 5' intergenic region of DNA-A resembled the sequence of the cognate DNA-B sequence. The majority of nucleotide changes in coding regions were non-synonymous, most with predicted deleterious effects on protein structure, indicative of relaxed selection pressure over six vegetative passages. Overall, these results underscore the importance of knowing how cropping practices affect viral evolution and disease progression.


Asunto(s)
Begomovirus/genética , Variación Genética , Manihot/crecimiento & desarrollo , Manihot/virología , Enfermedades de las Plantas/virología , Secuencia de Bases , Begomovirus/fisiología , Codón , ADN Intergénico , ADN Viral/genética , Evolución Molecular , Genoma Viral , Mutación , Polimorfismo de Nucleótido Simple , Virus Satélites/genética , Virus Satélites/fisiología , Eliminación de Secuencia , Temperatura , Proteínas Virales/genética
13.
Commun Biol ; 4(1): 313, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750915

RESUMEN

Understanding how species-rich communities persist is a foundational question in ecology. In tropical forests, tree diversity is structured by edaphic factors, climate, and biotic interactions, with seasonality playing an essential role at landscape scales: wetter and less seasonal forests typically harbor higher tree diversity than more seasonal forests. We posited that the abiotic factors shaping tree diversity extend to hyperdiverse symbionts in leaves-fungal endophytes-that influence plant health, function, and resilience to stress. Through surveys in forests across Panama that considered climate, seasonality, and covarying biotic factors, we demonstrate that endophyte richness varies negatively with temperature seasonality. Endophyte community structure and taxonomic composition reflect both temperature seasonality and climate (mean annual temperature and precipitation). Overall our findings highlight the vital role of climate-related factors in shaping the hyperdiversity of these important and little-known symbionts of the trees that, in turn, form the foundations of tropical forest biodiversity.


Asunto(s)
Biota , Endófitos/clasificación , Hongos/clasificación , Hojas de la Planta/microbiología , Bosque Lluvioso , Estaciones del Año , Árboles/microbiología , Clima Tropical , Simbiosis
14.
Mol Ecol ; 30(10): 2404-2416, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33740826

RESUMEN

Parasites can affect and be affected by the host's microbiome, with consequences for host susceptibility, parasite transmission, and host and parasite fitness. Yet, two aspects of the relationship between parasite infection and host microbiota remain little understood: the nature of the relationship under field conditions, and how the relationship varies among parasites. To overcome these limitations, we performed a field survey of the within-leaf fungal community in a tall fescue population. We investigated how diversity and composition of the fungal microbiome associate with natural infection by fungal parasites with different feeding strategies. A parasite's feeding strategy affects both parasite requirements of the host environment and parasite impacts on the host environment. We hypothesized that parasites that more strongly modify niches available within a host will be associated with greater changes in microbiome diversity and composition. Parasites with a feeding strategy that creates necrotic tissue to extract resources (necrotrophs) may not only have different niche requirements, but also act as particularly strong niche modifiers. Barcoded amplicon sequencing of the fungal ITS region revealed that leaf segments symptomatic of necrotrophs had lower fungal diversity and distinct composition compared to segments that were asymptomatic or symptomatic of other parasites. There were no clear differences in fungal diversity or composition between leaf segments that were asymptomatic and segments symptomatic of other parasite feeding strategies. Our results motivate future experimental work to test how the relationship between the microbiome and parasite infection is impacted by parasite feeding strategy and highlight the potential importance of parasite traits.


Asunto(s)
Microbiota , Micobioma , Parásitos , Enfermedades Parasitarias , Animales , Interacciones Huésped-Parásitos , Microbiota/genética , Parásitos/genética
15.
Microb Ecol ; 82(1): 21-34, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33410938

RESUMEN

Isolating microbes is vital to study microbiomes, but insights into microbial diversity and ecology can be constrained by recalcitrant or unculturable strains. Culture-free methods (e.g., next-generation sequencing, NGS) have become popular in part because they detect greater richness than culturing alone. Both approaches are used widely to characterize microfungi within healthy leaves (foliar endophytes), but methodological differences among studies can constrain large-scale insights into endophyte ecology. We examined endophytes in a temperate plant community to quantify how certain methodological factors, such as the choice of cultivation media for culturing and storage period after leaf collection, affect inferences regarding endophyte communities; how such effects vary among plant taxa; and how complementary culturing and NGS can be when subsets of the same plant tissue are used for each. We found that endophyte richness and composition from culturing were consistent across five media types. Insights from culturing and NGS were largely robust to differences in storage period (1, 5, and 10 days). Although endophyte richness, composition, and taxonomic diversity identified via culturing vs. NGS differed markedly, both methods revealed host-structured communities. Studies differing only in cultivation media or storage period thus can be compared to estimate endophyte richness, composition, and turnover at scales larger than those of individual studies alone. Our data show that it is likely more important to sample more host species, rather than sampling fewer species more intensively, to quantify endophyte diversity in given locations, with the richest insights into endophyte ecology emerging when culturing and NGS are paired.


Asunto(s)
Endófitos , Hongos , Endófitos/genética , Hongos/genética , Filogenia , Hojas de la Planta , Plantas
16.
Plant Dis ; 105(3): 691-694, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32720885

RESUMEN

Fungi in the genus Clarireedia are widespread and destructive pathogens of grasses worldwide, and are best known as the causal agents of dollar spot disease in turfgrass. Here, we report genome assemblies of seven Clarireedia isolates, including ex-types of the two most widespread species, Clarireedia jacksonii and C. monteithiana. These datasets provide a valuable resource for ongoing studies of the dollar spot pathogens that include population diversity, host-pathogen interactions, marker development, and disease control.


Asunto(s)
Agrostis , Ascomicetos , Ascomicetos/genética , Interacciones Huésped-Patógeno , Poaceae
17.
Fungal Genet Biol ; 144: 103478, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33059038

RESUMEN

The carcinogenic aflatoxins are a human health concern as well as an economic burden to corn, peanut and other crops grown within the United States and globally. Aflatoxins are produced by fungi species in Aspergillus section Flavi, primarily Aspergillus flavus. Though previously thought of as only asexual, A. flavus has recently been found to undergo sexual reproduction both in laboratory crosses and in the field. To elucidate the consequences of genetic exchange through a single generation of the sexual cycle within A. flavus, we constructed genetic maps based on three mapping populations, each composed of the parental strains and approximately 70 F1 progeny. Genome-wide data using double digest Restriction Associated DNA sequencing identified 496, 811, and 576 significant polymorphisms differentiating parents across eight linkage groups; these polymorphisms served as markers. Average spacing between marker loci was 3.1, 2.1, and 3.5 map units and overall map length was 1504.4, 1669.2, and 2001.3 cM. Recombination was non-randomly distributed across chromosomes with an average rate of recombination of about 46.81 cM per Mbp. We showed inheritance of mitochondrial loci from the sclerotial (female) parent in crosses, whereas nuclear loci showed a 1:1 segregation ratio from both parents. The linkage map will be useful in QTL analyses to identify traits that increase sexual fertility in A. flavus and modulate aflatoxin production, both of which have significant implications for sustainable reduction of aflatoxin contamination using biological control agents.


Asunto(s)
Aflatoxinas/genética , Aspergillus flavus/genética , Variación Genética/genética , Reproducción/genética , Aspergillus flavus/crecimiento & desarrollo , Mapeo Cromosómico/métodos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Ligamiento Genético/genética , Genotipo , Humanos , Fenotipo , Análisis de Secuencia de ADN , Zea mays/genética , Zea mays/microbiología
18.
Mycologia ; 112(5): 908-920, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32821029

RESUMEN

Aspergillus flavus contaminates agricultural products worldwide with carcinogenic aflatoxins that pose a serious health risk to humans and animals. The fungus survives adverse environmental conditions through production of sclerotia. When fertilized by a compatible conidium of an opposite mating type, a sclerotium transforms into a stroma within which ascocarps, asci, and ascospores are formed. However, the transition from a sclerotium to a stroma during sexual reproduction in A. flavus is not well understood. Early events during the interaction between sexually compatible strains of A. flavus were visualized using conidia of a green fluorescent protein (GFP)-labeled MAT1-1 strain and sclerotia of an mCherry-labeled MAT1-2 strain. Both conidia and sclerotia of transformed strains germinated to produce hyphae within 24 h of incubation. Hyphal growth of these two strains produced what appeared to be a network of interlocking hyphal strands that were observed at the base of the mCherry-labeled sclerotia (i.e., region in contact with agar surface) after 72 h of incubation. At 5 wk following incubation, intracellular green-fluorescent hyphal strands were observed within the stromatal matrix of the mCherry-labeled strain. Scanning electron microscopy of stromata from a high- and low-fertility cross and unmated sclerotia was used to visualize the formation and development of sexual structures within the stromatal and sclerotial matrices, starting at the time of crossing and thereafter every 2 wk until 8 wk of incubation. Morphological differences between sclerotia and stromata became apparent at 4 wk of incubation. Internal hyphae and croziers were detected inside multiple ascocarps that developed within the stromatal matrix of the high-fertility cross but were not detected in the matrix of the low-fertility cross or the unmated sclerotia. At 6 to 8 wk of incubation, hyphal tips produced numerous asci, each containing one to eight ascospores that emerged out of an ascus following the breakdown of the ascus wall. These observations broaden our knowledge of early events during sexual reproduction and suggest that hyphae from the conidium-producing strain may be involved in the early stages of sexual reproduction in A. flavus. When combined with omics data, these findings could be useful in further exploration of the molecular and biochemical mechanisms underlying sexual reproduction in A. flavus.


Asunto(s)
Aspergillus flavus/citología , Aspergillus flavus/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/citología , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Reproducción/fisiología , Esporas Fúngicas/citología , Esporas Fúngicas/crecimiento & desarrollo , Aspergillus flavus/genética , Fertilidad , Contaminación de Alimentos , Cuerpos Fructíferos de los Hongos/genética , Variación Genética , Genotipo , Humanos , Micotoxinas , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Reproducción/genética , Esporas Fúngicas/genética
19.
Nat Ecol Evol ; 3(10): 1430-1437, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31548643

RESUMEN

Boreal forests represent the world's largest terrestrial biome and provide ecosystem services of global importance. Highly imperilled by climate change, these forests host Earth's greatest phylogenetic diversity of endophytes, a hyperdiverse group of symbionts that are defined by their occurrence within living, symptomless plant and lichen tissues. Endophytes shape the ecological and evolutionary trajectories of plants and are therefore key to the function and resilience of terrestrial ecosystems. A critical step in linking the ecological functions of endophytes with those of their hosts is to understand the distributions of these symbionts at the global scale; however, turnover in host taxa with geography and climate can confound insights into endophyte biogeography. As a result, global drivers of endophyte diversity and distributions are not known. Here, we leverage sampling from phylogenetically diverse boreal plants and lichens across North America and Eurasia to show that host filtering in distinctive environments, rather than turnover with geographical or environmental distance, is the main determinant of the community composition and diversity of endophytes. We reveal the distinctiveness of boreal endophytes relative to soil fungi worldwide and endophytes from diverse temperate biomes, highlighting a high degree of global endemism. Overall, the distributions of endophytes are directly linked to the availability of compatible hosts, highlighting the role of biotic interactions in shaping fungal communities across large spatial scales, and the threat that climate change poses to biological diversity and function in the imperilled boreal realm.


Asunto(s)
Ecosistema , Endófitos , América del Norte , Filogenia , Simbiosis
20.
Front Microbiol ; 10: 1738, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417528

RESUMEN

Biocontrol using non-aflatoxigenic strains of Aspergillus flavus has the greatest potential to mitigate aflatoxin contamination in agricultural produce. However, factors that influence the efficacy of biocontrol agents in reducing aflatoxin accumulation under field conditions are not well-understood. Shifts in the genetic structure of indigenous soil populations of A. flavus following application of biocontrol products Afla-Guard and AF36 were investigated to determine how these changes can influence the efficacy of biocontrol strains in reducing aflatoxin contamination. Soil samples were collected from maize fields in Alabama, Georgia, and North Carolina in 2012 and 2013 to determine changes in the population genetic structure of A. flavus in the soil following application of the biocontrol strains. A. flavus L was the most dominant species of Aspergillus section Flavi with a frequency ranging from 61 to 100%, followed by Aspergillus parasiticus that had a frequency of <35%. The frequency of A. flavus L increased, while that of A. parasiticus decreased after application of biocontrol strains. A total of 112 multilocus haplotypes (MLHs) were inferred from 1,282 isolates of A. flavus L using multilocus sequence typing of the trpC, mfs, and AF17 loci. A. flavus individuals belonging to the Afla-Guard MLH in the IB lineage were the most dominant before and after application of biocontrol strains, while individuals of the AF36 MLH in the IC lineage were either recovered in very low frequencies or not recovered at harvest. There were no significant (P > 0.05) differences in the frequency of individuals with MAT1-1 and MAT1-2 for clone-corrected MLH data, an indication of a recombining population resulting from sexual reproduction. Population mean mutation rates were not different across temporal and spatial scales indicating that mutation alone is not a driving force in observed multilocus sequence diversity. Clustering based on principal component analysis identified two distinct evolutionary lineages (IB and IC) across all three states. Additionally, patristic distance analysis revealed phylogenetic incongruency among single locus phylogenies which suggests ongoing genetic exchange and recombination. Levels of aflatoxin accumulation were very low except in North Carolina in 2012, where aflatoxin levels were significantly (P < 0.05) lower in grain from treated compared to untreated plots. Phylogenetic analysis showed that Afla-Guard was more effective than AF36 in shifting the indigenous soil populations of A. flavus toward the non-toxigenic or low aflatoxin producing IB lineage. These results suggest that Afla-Guard, which matches the genetic and ecological structure of indigenous soil populations of A. flavus in Alabama, Georgia, and North Carolina, is likely to be more effective in reducing aflatoxin accumulation and will also persist longer in the soil than AF36 in the southeastern United States.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA