Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomed Opt ; 29(2): 025004, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38419755

RESUMEN

Significance: Continuous-wave functional near-infrared spectroscopy has proved to be a valuable tool for assessing hemodynamic activity in the human brain in a non-invasively and inexpensive way. However, most of the current processing/analysis methods assume the head is a homogeneous medium, and hence do not appropriately correct for the signal coming from the scalp. This effect can be reduced by considering light propagation in a layered model of the human head, being the Monte Carlo (MC) simulations the gold standard to this end. However, this implies large computation times and demanding hardware capabilities. Aim: In this work, we study the feasibility of replacing the homogeneous model and the MC simulations by means of analytical multilayered models, combining in this way, the speed and simplicity of implementation of the former with the robustness and accuracy of the latter. Approach: Oxy- and deoxyhemoglobin (HbO and HbR, respectively) concentration changes were proposed in two different layers of a magnetic resonance imaging (MRI)-based meshed model of the human head, and then these changes were retrieved by means of (i) a typical homogeneous reconstruction and (ii) a theoretical layered reconstruction. Results: Results suggest that the use of analytical models of light propagation in layered models outperforms the results obtained using traditional homogeneous reconstruction algorithms, providing much more accurate results for both, the extra- and the cerebral tissues. We also compare the analytical layered reconstruction with MC-based reconstructions, achieving similar degrees of accuracy, especially in the gray matter layer, but much faster (between 4 and 5 orders of magnitude). Conclusions: We have successfully developed, implemented, and validated a method for retrieving chromophore concentration changes in the human brain, combining the simplicity and speed of the traditional homogeneous reconstruction algorithms with robustness and accuracy much more similar to those provided by MC simulations.


Asunto(s)
Encéfalo , Fotones , Humanos , Simulación por Computador , Encéfalo/diagnóstico por imagen , Cuero Cabelludo/diagnóstico por imagen , Algoritmos , Imagen por Resonancia Magnética , Método de Montecarlo , Fantasmas de Imagen
2.
Phys Med Biol ; 69(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38048632

RESUMEN

Objective.MamoRef is an mammography device that uses near-infrared light, designed to provide clinically relevant information for the screening of diseases of the breast. Using low power continuous wave lasers and a high sensitivity CCD (Charge-coupled device) that captures a diffusely reflected image of the tissue, MamoRef results in a versatile diagnostic tool that aims to fulfill a complementary role in the diagnosis of breast cancer providing information about the relative hemoglobin concentrations as well as oxygen saturation.Approach.We present the design and development of an initial prototype of MamoRef. To ensure its effectiveness, we conducted validation tests on both the theoretical basis of the reconstruction algorithm and the hardware design. Furthermore, we initiated a clinical feasibility study involving patients diagnosed with breast disease, thus evaluating the practical application and potential benefits of MamoRef in a real-world setting.Main results.Our study demonstrates the effectiveness of the reconstruction algorithm in recovering relative concentration differences among various chromophores, as confirmed by Monte Carlo simulations. These simulations show that the recovered data correlates well with the ground truth, with SSIMs of 0.8 or more. Additionally, the phantom experiments validate the hardware implementation. The initial clinical findings exhibit highly promising outcomes regarding MamoRef's ability to differentiate between lesions.Significance.MamoRef aims to be an advancement in the field of breast pathology screening and diagnostics, providing complementary information to standard diagnostic techniques. One of its main advantages is the ability of determining oxy/deoxyhemoglobin concentrations and oxygen saturation; this constitutes valuable complementary information to standard diagnostic techniques. Besides, MamoRef is a portable and relatively inexpensive device, intended to be not only used in specific medical imaging facilities. Finally, its use does not require external compression of the breast. The findings of this study underscore the potential of MamoRef in fulfilling this crucial role.


Asunto(s)
Enfermedades de la Mama , Neoplasias de la Mama , Humanos , Femenino , Mamografía/métodos , Mama/diagnóstico por imagen , Mama/patología , Neoplasias de la Mama/patología , Enfermedades de la Mama/patología , Fantasmas de Imagen
3.
J Opt Soc Am A Opt Image Sci Vis ; 40(4): C126-C137, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132982

RESUMEN

Functional near infrared spectroscopy has been used in recent decades to sense and quantify changes in hemoglobin concentrations in the human brain. This noninvasive technique can deliver useful information concerning brain cortex activation associated with different motor/cognitive tasks or external stimuli. This is usually accomplished by considering the human head as a homogeneous medium; however, this approach does not explicitly take into account the detailed layered structure of the head, and thus, extracerebral signals can mask those arising at the cortex level. This work improves this situation by considering layered models of the human head during reconstruction of the absorption changes in layered media. To this end, analytically calculated mean partial pathlengths of photons are used, which guarantees fast and simple implementation in real-time applications. Results obtained from synthetic data generated by Monte Carlo simulations in two- and four-layered turbid media suggest that a layered description of the human head greatly outperforms typical homogeneous reconstructions, with errors, in the first case, bounded up to ∼20% maximum, while in the second case, the error is usually larger than 75%. Experimental measurements on dynamic phantoms support this conclusion.


Asunto(s)
Encéfalo , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Cabeza/fisiología , Fotones , Método de Montecarlo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA