Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 4(3): 100957, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36889319

RESUMEN

Hyperpolarizing GABAAR currents, the unitary events that underlie synaptic inhibition, are dependent upon efficient Cl- extrusion, a process that is facilitated by the neuronal specific K+/Cl- co-transporter KCC2. Its activity is also a determinant of the anticonvulsant efficacy of the canonical GABAAR-positive allosteric: benzodiazepines (BDZs). Compromised KCC2 activity is implicated in the pathophysiology of status epilepticus (SE), a medical emergency that rapidly becomes refractory to BDZ (BDZ-RSE). Here, we have identified small molecules that directly bind to and activate KCC2, which leads to reduced neuronal Cl- accumulation and excitability. KCC2 activation does not induce any overt effects on behavior but prevents the development of and terminates ongoing BDZ-RSE. In addition, KCC2 activation reduces neuronal cell death following BDZ-RSE. Collectively, these findings demonstrate that KCC2 activation is a promising strategy to terminate BDZ-resistant seizures and limit the associated neuronal injury.


Asunto(s)
Estado Epiléptico , Simportadores , Ratones , Animales , Benzodiazepinas/farmacología , Benzodiazepinas/uso terapéutico , Estado Epiléptico/tratamiento farmacológico , Convulsiones/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Simportadores/metabolismo
2.
J Biol Chem ; 296: 100364, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539918

RESUMEN

The K+/Cl- cotransporter KCC2 (SLC12A5) allows mature neurons in the CNS to maintain low intracellular Cl- levels that are critical in mediating fast hyperpolarizing synaptic inhibition via type A γ-aminobutyric acid receptors (GABAARs). In accordance with this, compromised KCC2 activity results in seizures, but whether such deficits directly contribute to the subsequent changes in neuronal structure and viability that lead to epileptogenesis remains to be assessed. Canonical hyperpolarizing GABAAR currents develop postnatally, which reflect a progressive increase in KCC2 expression levels and activity. To investigate the role that KCC2 plays in regulating neuronal viability and architecture, we have conditionally ablated KCC2 expression in developing and mature neurons. Decreasing KCC2 expression in mature neurons resulted in the rapid activation of the extrinsic apoptotic pathway. Intriguingly, direct pharmacological inhibition of KCC2 in mature neurons was sufficient to rapidly induce apoptosis, an effect that was not abrogated via blockade of neuronal depolarization using tetrodotoxin (TTX). In contrast, ablating KCC2 expression in immature neurons had no discernable effects on their subsequent development, arborization, or dendritic structure. However, removing KCC2 in immature neurons was sufficient to ablate the subsequent postnatal development of hyperpolarizing GABAAR currents. Collectively, our results demonstrate that KCC2 plays a critical role in neuronal survival by limiting apoptosis, and mature neurons are highly sensitive to the loss of KCC2 function. In contrast, KCC2 appears to play a minimal role in mediating neuronal development or architecture.


Asunto(s)
Neuronas/metabolismo , Simportadores/metabolismo , Animales , Apoptosis , Cloruros/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/efectos de los fármacos , Neuronas/fisiología , Potasio/metabolismo , Cultivo Primario de Células , Receptores de GABA/metabolismo , Convulsiones , Simportadores/fisiología , Ácido gamma-Aminobutírico/metabolismo , Cotransportadores de K Cl
3.
Mol Neuropsychiatry ; 4(1): 20-29, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29998115

RESUMEN

A truncated disrupted in schizophrenia 1 (Disc1) gene increases the risk of psychiatric disorders, probably affecting cortical interneurons. Here, we sought to determine whether this cell population is affected in mice carrying a truncated (Disc1) allele (DN-DISC1). We utilized whole cell recordings to assess electrophysiological properties and modulation by dopamine (DA) in two classes of interneurons: fast-spiking (FS) and low threshold-spiking (LTS) interneurons in wild-type and DN-DISC1 mice. In DN-DISC1 mice, FS interneurons, but not LTS interneurons, exhibited altered action potentials. Further, the perineuronal nets that surround FS interneurons exhibited abnormal morphology in DN-DISC1 mice, and the DA modulation of this cell type was altered in DN-DISC1 mice. We conclude that early-life manipulation of a gene associated with risk of psychiatric disease can result in dysfunction, but not loss, of specific GABAergic interneurons. The resulting alteration of excitatory-inhibitory balance is a critical element in DISC1 pathophysiology.

4.
EBioMedicine ; 32: 62-71, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29884458

RESUMEN

Mesial temporal lobe epilepsy (mTLE) is the most common form of epilepsy, believed to arise in part from compromised GABAergic inhibition. The neuronal specific K+/Cl- co-transporter 2 (KCC2) is a critical determinant of the efficacy of GABAergic inhibition and deficits in its activity are observed in mTLE patients and animal models of epilepsy. To test if reductions of KCC2 activity directly contribute to the pathophysiology of mTLE, we locally ablated KCC2 expression in a subset of principal neurons within the adult hippocampus. Deletion of KCC2 resulted in compromised GABAergic inhibition and the development of spontaneous, recurrent generalized seizures. Moreover, local ablation of KCC2 activity resulted in hippocampal sclerosis, a key pathological change seen in mTLE. Collectively, our results demonstrate that local deficits in KCC2 activity within the hippocampus are sufficient to precipitate mTLE.


Asunto(s)
Epilepsia del Lóbulo Temporal/genética , Neuronas/metabolismo , Simportadores/genética , Ácido gamma-Aminobutírico/genética , Adulto , Animales , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Vectores Genéticos/genética , Genotipo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Neuronas/patología , Ácido gamma-Aminobutírico/metabolismo , Cotransportadores de K Cl
6.
Sci Rep ; 7(1): 16452, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184062

RESUMEN

KCC2 is a neuron specific K+-Cl- co-transporter that controls neuronal chloride homeostasis, and is critically involved in many neurological diseases including brain trauma, epilepsies, autism and schizophrenia. Despite significant accumulating data on the biology and electrophysiological properties of KCC2, structure-function relationships remain poorly understood. Here we used calixarene detergent to solubilize and purify wild-type non-aggregated and homogenous KCC2. Specific binding of inhibitor compound VU0463271 was demonstrated using surface plasmon resonance (SPR). Mass spectrometry revealed glycosylations and phosphorylations as expected from functional KCC2. We show by electron microscopy (EM) that KCC2 exists as monomers and dimers in solution. Monomers are organized into "head" and "core" domains connected by a flexible "linker". Dimers are asymmetrical and display a bent "S-shape" architecture made of four distinct domains and a flexible dimerization interface. Chemical crosslinking in reducing conditions shows that disulfide bridges are involved in KCC2 dimerization. Moreover, we show that adding a tag to the C-terminus is detrimental to KCC2 function. We postulate that the conserved KCC2 C-ter may be at the interface of dimerization. Taken together, our findings highlight the flexible multi-domain structure of KCC2 with variable anchoring points at the dimerization interface and an important C-ter extremity providing the first in-depth functional architecture of KCC2.

7.
J Biol Chem ; 292(52): 21253-21263, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29092909

RESUMEN

K+/Cl- cotransporter 2 (KCC2) is selectively expressed in the adult nervous system and allows neurons to maintain low intracellular Cl- levels. Thus, KCC2 activity is an essential prerequisite for fast hyperpolarizing synaptic inhibition mediated by type A γ-aminobutyric acid (GABAA) receptors, which are Cl--permeable, ligand-gated ion channels. Consistent with this, deficits in the activity of KCC2 lead to epilepsy and are also implicated in neurodevelopmental disorders, neuropathic pain, and schizophrenia. Accordingly, there is significant interest in developing activators of KCC2 as therapeutic agents. To provide insights into the cellular processes that determine KCC2 activity, we have investigated the mechanism by which N-ethylmaleimide (NEM) enhances transporter activity using a combination of biochemical and electrophysiological approaches. Our results revealed that, within 15 min, NEM increased cell surface levels of KCC2 and modulated the phosphorylation of key regulatory residues within the large cytoplasmic domain of KCC2 in neurons. More specifically, NEM increased the phosphorylation of serine 940 (Ser-940), whereas it decreased phosphorylation of threonine 1007 (Thr-1007). NEM also reduced with no lysine (WNK) kinase phosphorylation of Ste20-related proline/alanine-rich kinase (SPAK), a kinase that directly phosphorylates KCC2 at residue Thr-1007. Mutational analysis revealed that Thr-1007 dephosphorylation mediated the effects of NEM on KCC2 activity. Collectively, our results suggest that compounds that either increase the surface stability of KCC2 or reduce Thr-1007 phosphorylation may be of use as enhancers of KCC2 activity.


Asunto(s)
Etilmaleimida/metabolismo , Simportadores/metabolismo , Animales , Membrana Celular/metabolismo , Embrión de Mamíferos , Humanos , Moduladores del Transporte de Membrana/metabolismo , Neuronas/metabolismo , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de GABA/metabolismo , Simportadores/fisiología , Cotransportadores de K Cl
8.
Proc Natl Acad Sci U S A ; 114(44): 11763-11768, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078280

RESUMEN

Estrogen plays a critical role in many physiological processes and exerts profound effects on behavior by regulating neuronal excitability. While estrogen has been established to exert effects on dendritic morphology and excitatory neurotransmission its role in regulating neuronal inhibition is poorly understood. Fast synaptic inhibition in the adult brain is mediated by specialized populations of γ-c aA receptors (GABAARs) that are selectively enriched at synapses, a process dependent upon their interaction with the inhibitory scaffold protein gephyrin. Here we have assessed the role that estradiol (E2) plays in regulating the dynamics of GABAARs and stability of inhibitory synapses. Treatment of cultured cortical neurons with E2 reduced the accumulation of GABAARs and gephyrin at inhibitory synapses. However, E2 exposure did not modify the expression of either the total or the plasma membrane GABAARs or gephyrin. Mechanistically, single-particle tracking revealed that E2 treatment selectively reduced the dwell time and thereby decreased the confinement of GABAARs at inhibitory synapses. Consistent with our cell biology measurements, we observed a significant reduction in amplitude of inhibitory synaptic currents in both cultured neurons and hippocampal slices exposed to E2, while their frequency was unaffected. Collectively, our results suggest that acute exposure of neurons to E2 leads to destabilization of GABAARs and gephyrin at inhibitory synapses, leading to reductions in the efficacy of GABAergic inhibition via a postsynaptic mechanism.


Asunto(s)
Estradiol/farmacología , Inhibición Neural/efectos de los fármacos , Receptores de GABA-A/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Animales , Proteínas Portadoras/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Proteínas de la Membrana/farmacología , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Transmisión Sináptica/efectos de los fármacos
9.
J Neurosci ; 35(21): 8291-6, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26019342

RESUMEN

GABA(A) receptors form Cl(-) permeable channels that mediate the majority of fast synaptic inhibition in the brain. The K(+)/Cl(-) cotransporter KCC2 is the main mechanism by which neurons establish low intracellular Cl(-) levels, which is thought to enable GABAergic inhibitory control of neuronal activity. However, the widely used KCC2 inhibitor furosemide is nonselective with antiseizure efficacy in slices and in vivo, leading to a conflicting scheme of how KCC2 influences GABAergic control of neuronal synchronization. Here we used the selective KCC2 inhibitor VU0463271 [N-cyclopropyl-N-(4-methyl-2-thiazolyl)-2-[(6-phenyl-3-pyridazinyl)thio]acetamide] to investigate the influence of KCC2 function. Application of VU0463271 caused a reversible depolarizing shift in E(GABA) values and increased spiking of cultured hippocampal neurons. Application of VU0463271 to mouse hippocampal slices under low-Mg(2+) conditions induced unremitting recurrent epileptiform discharges. Finally, microinfusion of VU0463271 alone directly into the mouse dorsal hippocampus rapidly caused epileptiform discharges. Our findings indicated that KCC2 function was a critical inhibitory factor ex vivo and in vivo.


Asunto(s)
Hipocampo/fisiología , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Simportadores/antagonistas & inhibidores , Simportadores/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Células HEK293 , Hipocampo/efectos de los fármacos , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Cotransportadores de K Cl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...