Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 12(39): 8226-8234, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27714263

RESUMEN

Understanding the formation and instability behavior of membranes is of fundamental interest and practical relevance to various biotechnological applications and self-assembly systems. Surfactant micellar membranes serve as a simple model system when surfactant molecules self-assemble into micellar structures under flow, but observing such process in real time is a major challenge due to limitations in spatiotemporal resolutions. We use a simple T-shaped microchannel to capture the formation and flow behavior of an ionic surfactant micro-micellar-membrane (µMM) when an aqueous stream of organic salt sodium salicylate (NaSal) meets a stream of cationic surfactant cetyltrimethylammonium bromide (CTAB). The µMM is shown to grow and become unstable depending on the flow rate, as characterized using micro-particle image velocimetry, fluorescence microscopy, flow birefringence, and bulk rheometry. We propose a simple model that accounts for the flow, elasticity and inertia of the µMM to analyze its flow behavior. Our experimental protocol can be easily replicated in conventional laboratories without the need of utilizing sophisticated equipment such as synchrotron small angle X-ray scattering and micro-electronics circuits. Our combined experimental and modeling results can be extrapolated to provide new insights to study the flow behavior and thermodynamic phases of lipid membranes, membrane proteins, and biological membranes.


Asunto(s)
Membranas/química , Micelas , Tensoactivos/química , Elasticidad , Iones
2.
Sci Rep ; 5: 17941, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26648269

RESUMEN

Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.

3.
Soft Matter ; 10(46): 9300-12, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25338308

RESUMEN

In equilibrium, wormlike micelles can transition from entangled to branched structures with increasing surfactant concentrations and ionic strength. Under flow conditions, structural transition of micellar solutions can follow very different trajectories. In this study we consider the flow of a semi-dilute wormlike micellar solution through an array of microposts, with focus on its rheological and microstructural evolutions. Specifically, the micellar solution (precursor) contains cationic surfactant cetyltrimethylammonium bromide (CTAB) and hydrotropic organic salt 3-hydroxynaphthalene-2-carboxylate (SHNC). We report the formation of a flow induced structured phase (FISP), with entangled, branched, and multi-connected micellar bundles, evidenced by electron microscopy and small-angle neutron scattering (SANS). By integrating gold-etched microheaters with the micropost design in a microfluidic device, we investigate the localized temperature effect on both the precursor and FISP, with complementary investigations from SANS. We observe that the FISP does not completely disintegrate at high temperatures, whereas, the precursor exhibits shortening of wormlike micelles as temperature increases. We also correlate the microstructure of both FISP and precursor with two point passive microrheology and bulk rheology characterizations.

4.
Lab Chip ; 14(20): 3912-6, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25144867

RESUMEN

A simple microfluidic platform was utilized to immobilize glucose oxidase (GOx) in a nonionic micellar scaffold. The immobilization of GOx was verified by using a combination of cryogenic electron microscopy (cryo-EM), scanning electron microscopy (SEM), and ultraviolet spectroscopy (UV) techniques. Chronoamperometric measurements were conducted on nanogel-GOx scaffolds under different glucose concentrations, exhibiting linear amperometric responses. Without impacting the lifetime and denaturation of GOx, the nonionic nanogel provides a favorable microenvironment for GOx in biological media. This flow-induced immobilization method in a nonionic nanogel host matrix opens up new pathways for designing a simple, fast, biocompatible, and cost-effective process to immobilize biomolecules that are averse to ionic environments.


Asunto(s)
Técnicas Biosensibles , Enzimas Inmovilizadas/química , Glucosa Oxidasa/química , Glucosa/análisis , Micelas , Técnicas Analíticas Microfluídicas , Polietilenglicoles/química , Polietileneimina/química , Microscopía por Crioelectrón , Enzimas Inmovilizadas/metabolismo , Glucosa/metabolismo , Glucosa Oxidasa/metabolismo , Nanogeles , Polietilenglicoles/metabolismo , Polietileneimina/metabolismo
5.
Langmuir ; 29(50): 15485-95, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24274648

RESUMEN

In this work, we consider the flow of a nonionic micellar solution (precursor) through an array of microposts, with focus on its microstructural and rheological evolution. The precursor contains polyoxyethylene(20) sorbitan monooleate (Tween-80) and cosurfactant monolaurin (ML). An irreversible flow-induced structured phase (NI-FISP) emerges after the nonionic precursor flows through the hexagonal micropost arrays, when subjected to strain rates ~10(4) s(-1) and strain ~10(3). NI-FISP consists of close-looped micellar bundles and multiconnected micellar networks as evidenced by transmission electron microscopy (TEM) and cryo-electron microscopy (cryo-EM). We also conduct small-angle neutron scattering (SANS) measurements in both precursor and NI-FISP to illustrate the structural transition. We propose a potential mechanism for the NI-FISP formation that relies on the micropost arrays and the flow kinematics in the microdevice to induce entropic fluctuations in the micellar solution. Finally, we show that the rheological variation from a viscous precursor solution to a viscoelastic micellar structured phase is associated with the structural evolution from the precursor to NI-FISP.


Asunto(s)
Micelas , Microscopía por Crioelectrón , Microscopía Electrónica de Transmisión , Polietilenglicoles/química , Soluciones , Tensoactivos/química
6.
ACS Nano ; 7(11): 9704-13, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24168354

RESUMEN

We report the formation of nanostructured toroidal micellar bundles (nTMB) from a semidilute wormlike micellar solution, evidenced by both cryogenic-electron microscopy and transmission electron microscopy images. Our strategy for creating nTMB involves a two-step protocol consisting of a simple prestraining process followed by flow through a microfluidic device containing an array of microposts, producing strain rates in the wormlike micelles on the order of 10(5) s(-1). In combination with microfluidic confinement, these unusually large strain rates allow for the formation of stable nTMB. Electron microscopy images reveal a variety of nTMB morphologies and provide the size distribution of the nTMB. Small-angle neutron scattering indicates the underlying microstructural transition from wormlike micelles to nTMB. We also show that other flow-induced approaches such as sonication can induce and control the emergence of onion-like and nTMB structures, which may provide a useful tool for nanotemplating.

7.
Proc Natl Acad Sci U S A ; 110(18): E1653-60, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23569247

RESUMEN

Surfactant molecules can self-assemble into various morphologies under proper combinations of ionic strength, temperature, and flow conditions. At equilibrium, wormlike micelles can transition from entangled to branched and multiconnected structures with increasing salt concentration. Under certain flow conditions, micellar structural transitions follow different trajectories. In this work, we consider the flow of two semidilute wormlike micellar solutions through microposts, focusing on their microstructural and rheological evolutions. Both solutions contain cetyltrimethylammonium bromide and sodium salicylate. One is weakly viscoelastic and shear thickening, whereas the other is strongly viscoelastic and shear thinning. When subjected to strain rates of ∼10(3) s(-1) and strains of ∼10(3), we observe the formation of a stable flow-induced structured phase (FISP), with entangled, branched, and multiconnected micellar bundles, as evidenced by electron microscopy. The high stretching and flow alignment in the microposts enhance the flexibility and lower the bending modulus of the wormlike micelles. As flexible micelles flow through the microposts, it becomes energetically favorable to minimize the number of end caps while concurrently promoting the formation of cross-links. The presence of spatial confinement and extensional flow also enhances entropic fluctuations, lowering the energy barrier between states, thus increasing transition frequencies between states and enabling FISP formation. Whereas the rheological properties (zero-shear viscosity, plateau modulus, and stress relaxation time) of the shear-thickening precursor are smaller than those of the FISP, those of the shear-thinning precursor are several times larger than those of the FISP. This rheological property variation stems from differences in the structural evolution from the precursor to the FISP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...