Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Curr Protoc ; 3(8): e857, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37540795

RESUMEN

Understanding how a gene variant affects protein function is important in life science, as it helps explain traits or dysfunctions in organisms. In a clinical setting, this understanding makes it possible to improve and personalize patient care. Bioinformatic tools often only assign a pathogenicity score, rather than providing information about the molecular basis for phenotypes. Experimental testing can furnish this information, but this is slow and costly and requires expertise and equipment not available in a clinical setting. Conversely, mapping a gene variant onto the three-dimensional (3D) protein structure provides a fast molecular assessment free of charge. Before 2021, this type of analysis was severely limited by the availability of experimentally determined 3D protein structures. Advances in artificial intelligence algorithms now allow confident prediction of protein structural features from sequence alone. The aim of the protocols presented here is to enable non-experts to use databases and online tools to investigate the molecular effect of a genetic variant. The Basic Protocol relies only on the online resources AlphaFold, Protein Structure Database, and UniProt. Alternate Protocols document the usage of the Protein Data Bank, SWISS-MODEL, ColabFold, and PyMOL for structure-based variant analysis. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: 3D Mapping based on UniProt and AlphaFold Alternate Protocol 1: Using experimental models from the PDB Alternate Protocol 2: Using information from homology modeling with SWISS-MODEL Alternate Protocol 3: Predicting 3D structures with ColabFold Alternate Protocol 4: Structure visualization and analysis with PyMOL.


Asunto(s)
Inteligencia Artificial , Proteínas , Modelos Moleculares , Proteínas/química , Proteínas/genética , Algoritmos , Bases de Datos de Proteínas
2.
Rev Colomb Psiquiatr (Engl Ed) ; 52(2): 130-138, 2023.
Artículo en Inglés, Español | MEDLINE | ID: mdl-37453823

RESUMEN

INTRODUCTION: Serotonin is highly implicated in the regulation of emotional state and the execution of cognitive tasks, so much so that the serotonin transporter genes (5-HTT, SLC6A4) and the serotonin receptor genes (HTR1A, HTR1B, HTR2A) have become the perfect candidates when studying the effects that these genes and their polymorphic variations have on depression characteristics. OBJECTIVE: A review of research reports that have studied the effects of variations in the serotonin transporter and receptor genes on different clinical features of depression. METHODS: A search of the Scopus, Web of Science and PubMed databases was conducted using the keywords ("depression" AND "polymorphism"). CONCLUSIONS: According to the review of 54 articles, the short allele of the 5-HTTLPR polymorphism was found to be the most reported risk factor related to the development of depression and its severity. Variations in the genes studied (SLC6A4, HTR1A, HTR2A) can generate morphological alterations of brain structures.


Asunto(s)
Depresión , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Humanos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Depresión/genética , Polimorfismo Genético , Serotonina/genética , Alelos
3.
Rev. colomb. psiquiatr ; 52(2)jun. 2023.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1536130

RESUMEN

Introducción: La serotonina tiene gran implicación en la regulación del estado emocional y la ejecución de tareas cognitivas, de modo que los genes del transportador de serotonina (5-HTT, SLC6A4) y de los receptores de serotonina (HTR1A, HTR1B, HTR2A) se convierten en candidatos adecuados para estudiar los efectos de estos genes y sus variaciones polimórficas en las características de la depresión. Objetivo: Revisión de reportes de investigación que hayan estudiado los efectos de las variantes de los genes del transportador y de los receptores de serotonina en las diferentes características clínicas de la depresión. Métodos: Se realizó una búsqueda en las bases de datos Scopus, Web of Science y PubMed con las palabras clave "depression", AND "polymorphism". Conclusiones: Según la revisión de 54 artículos, se encontró que el alelo corto del polimorfismo de 5-HTTLPR es el factor de riesgo más reportado en relación con el desarrollo de depresión y su gravedad. Las variantes de los genes estudiados (SLC6A4, HTR1A, HTR1B y HTR2A) pueden generar alteraciones morfológicas de estructuras cerebrales.


Introduction: Serotonin is highly implicated in the regulation of emotional state and the execution of cognitive tasks, so much so that the serotonin transporter genes (5-HTT, SLC6A4) and the serotonin receptor genes (HTR1A, HTR1B, HTR2A) have become the perfect candidates when studying the effects that these genes and their polymorphic variations have on depression characteristics. Objective: A review of research reports that have studied the effects of variations in the serotonin transporter and receptor genes on different clinical features of depression. Methods: A search of the Scopus, Web of Science and PubMed databases was conducted using the keywords ("depression" AND "polymorphism"). Conclusions: According to the review of 54 articles, the short allele of the 5-HTTLPR polymorphism was found to be the most reported risk factor related to the development of depression and its severity. Variations in the genes studied (SLC6A4, HTR1A, HTR2A) can generate morphological alterations of brain structures.

4.
J Biol Chem ; 298(7): 102018, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526563

RESUMEN

Hyperekplexia is a rare neurological disorder characterized by exaggerated startle responses affecting newborns with the hallmark characteristics of hypertonia, apnea, and noise or touch-induced nonepileptic seizures. The genetic causes of the disease can vary, and several associated genes and mutations have been reported to affect glycine receptors (GlyRs); however, the mechanistic links between GlyRs and hyperekplexia are not yet understood. Here, we describe a patient with hyperekplexia from a consanguineous family. Extensive genetic screening using exome sequencing coupled with autozygome analysis and iterative filtering supplemented by in silico prediction identified that the patient carries the homozygous missense mutation A455P in GLRB, which encodes the GlyR ß-subunit. To unravel the physiological and molecular effects of A455P on GlyRs, we used electrophysiology in a heterologous system as well as immunocytochemistry, confocal microscopy, and cellular biochemistry. We found a reduction in glycine-evoked currents in N2A cells expressing the mutation compared to WT cells. Western blot analysis also revealed a reduced amount of GlyR ß protein both in cell lysates and isolated membrane fractions. In line with the above observations, coimmunoprecipitation assays suggested that the GlyR α1-subunit retained coassembly with ßA455P to form membrane-bound heteromeric receptors. Finally, structural modeling showed that the A455P mutation affected the interaction between the GlyR ß-subunit transmembrane domain 4 and the other helices of the subunit. Taken together, our study identifies and validates a novel loss-of-function mutation in GlyRs whose pathogenicity is likely to cause hyperekplexia in the affected individual.


Asunto(s)
Hiperekplexia , Receptores de Glicina , Humanos , Hiperekplexia/genética , Recién Nacido , Rigidez Muscular , Mutación , Mutación Missense , Receptores de Glicina/genética
5.
Artículo en Inglés, Español | MEDLINE | ID: mdl-34493397

RESUMEN

INTRODUCTION: Serotonin is highly implicated in the regulation of emotional state and the execution of cognitive tasks, so much so that the serotonin transporter genes (5-HTT, SLC6A4) and the serotonin receptor genes (HTR1A, HTR1B, HTR2A) have become the perfect candidates when studying the effects that these genes and their polymorphic variations have on depression characteristics. OBJECTIVE: A review of research reports that have studied the effects of variations in the serotonin transporter and receptor genes on different clinical features of depression. METHODS: A search of the Scopus, Web of Science and PubMed databases was conducted using the keywords ("depression" AND "polymorphism"). CONCLUSIONS: According to the review of 54 articles, the short allele of the 5-HTTLPR polymorphism was found to be the most reported risk factor related to the development of depression and its severity. Variations in the genes studied (SLC6A4, HTR1A, HTR2A) can generate morphological alterations of brain structures.

6.
Genet Med ; 23(11): 2122-2137, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34345025

RESUMEN

PURPOSE: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. METHODS: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. RESULTS: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. CONCLUSION: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.


Asunto(s)
Epilepsia , N-Metiltransferasa de Histona-Lisina , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Epilepsia/diagnóstico , Epilepsia/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Masculino , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Convulsiones/diagnóstico , Convulsiones/genética
8.
Front Pediatr ; 9: 582816, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937142

RESUMEN

Background: Craniosynostosis (CS) is defined as pre-mature fusion of one or more of the cranial sutures. CS is classified surgically as either simple or complex based on the number of cranial sutures involved. CS can also be classified genetically as isolated CS or syndromic CS if the patient has extracranial deformities. Currently, the link between clinical and genetic patterns of CS in the Saudi population is poorly understood. Methodology: We conducted a retrospective cohort study among 28 CS patients, of which 24 were operated and four were not. Clinical and genetic data were collected between February 2015 and February 2019, from consenting patient's families. The electronic chart data were collected and analyzed including patient demographics, craniofacial features, other anomalies and dysmorphic features, operative data, intra cranial pressure (ICP), parent consanguinity and genetic testing results. Results: The most common deformity in our population was trigonocephaly. The most performed procedure was cranial vault reconstruction with fronto-orbital advancement, followed by posterior vault distraction osteogenesis and suturectomy with barrel staving. Genetics analysis revealed pathogenic mutations in FGFR2 (6 cases), TWIST1 (3 cases), ALPL (2 cases), and TCF12 (2 cases), and FREM1 (2 case). Conclusion: Compared to Western countries, our Saudi cohort displays significant differences in the prevalence of CS features, such as the types of sutures and prevalence of inherited CS. The genomic background allows our phenotype-genotype study to reclassify variants of unknown significance. Worldwide, the sagittal suture is the most commonly affected suture in simple CS, but in the Saudi population, the metopic suture fusion was most commonly seen in our clinic. Further studies are needed to investigate the characteristics of CS in our population in a multicenter setting.

9.
Genes (Basel) ; 13(1)2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-35052432

RESUMEN

Pathogenic variants in GEMIN4 contribute to a hereditary disorder characterized by neurodevelopmental features, microcephaly, cataracts, and renal abnormalities (known as NEDMCR). To date, only two homoallelic variations have been linked to the disease. Moreover, clinical features associated with the variants have not been fully elucidated yet. Here, we identified a novel variant in GEMIN4 (NM_015721:exon2:c.440A>G:p.His147Arg) in two siblings from a consanguineous Saudi family by using whole exome sequencing followed by Sanger sequence verification. We comprehensively investigated the patients' clinical features, including brain imaging and electroencephalogram findings, and compared their phenotypic characteristics with those of previously reported cases. In silico prediction and structural modeling support that the p.His147Arg variant is pathogenic.


Asunto(s)
Consanguinidad , Antígenos de Histocompatibilidad Menor/genética , Mutación , Trastornos del Neurodesarrollo/patología , Fenotipo , Ribonucleoproteínas Nucleares Pequeñas/genética , Catarata/complicaciones , Catarata/genética , Catarata/patología , Niño , Epilepsia/complicaciones , Epilepsia/genética , Epilepsia/patología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Microcefalia/complicaciones , Microcefalia/genética , Microcefalia/patología , Trastornos del Neurodesarrollo/complicaciones , Trastornos del Neurodesarrollo/genética , Linaje , Cuadriplejía/complicaciones , Cuadriplejía/genética , Cuadriplejía/patología , Hermanos , Secuenciación del Exoma
10.
Front Cell Dev Biol ; 9: 801597, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35186953

RESUMEN

Klinefelter syndrome (KS) is the most prevalent aneuploidy in males and is characterized by a 47,XXY karyotype. Less frequently, higher grade sex chromosome aneuploidies (HGAs) can also occur. Here, using a paradigmatic cohort of KS and HGA induced pluripotent stem cells (iPSCs) carrying 49,XXXXY, 48,XXXY, and 47,XXY karyotypes, we identified the genes within the pseudoautosomal region 1 (PAR1) as the most susceptible to dosage-dependent transcriptional dysregulation and therefore potentially responsible for the progressively worsening phenotype in higher grade X aneuploidies. By contrast, the biallelically expressed non-PAR escape genes displayed high interclonal and interpatient variability in iPSCs and differentiated derivatives, suggesting that these genes could be associated with variable KS traits. By interrogating KS and HGA iPSCs at the single-cell resolution we showed that PAR1 and non-PAR escape genes are not only resilient to the X-inactive specific transcript (XIST)-mediated inactivation but also that their transcriptional regulation is disjointed from the absolute XIST expression level. Finally, we explored the transcriptional effects of X chromosome overdosage on autosomes and identified the nuclear respiratory factor 1 (NRF1) as a key regulator of the zinc finger protein X-linked (ZFX). Our study provides the first evidence of an X-dosage-sensitive autosomal transcription factor regulating an X-linked gene in low- and high-grade X aneuploidies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...