Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Circulation ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708635

RESUMEN

BACKGROUND: Recent interest in understanding cardiomyocyte cell cycle has been driven by potential therapeutic applications in cardiomyopathy. However, despite recent advances, cardiomyocyte mitosis remains a poorly understood process. For example, it is unclear how sarcomeres are disassembled during mitosis to allow the abscission of daughter cardiomyocytes. METHODS: Here, we use a proteomics screen to identify adducin, an actin capping protein previously not studied in cardiomyocytes, as a regulator of sarcomere disassembly. We generated many adeno-associated viruses and cardiomyocyte-specific genetic gain-of-function models to examine the role of adducin in neonatal and adult cardiomyocytes in vitro and in vivo. RESULTS: We identify adducin as a regulator of sarcomere disassembly during mammalian cardiomyocyte mitosis. α/γ-adducins are selectively expressed in neonatal mitotic cardiomyocytes, and their levels decline precipitously thereafter. Cardiomyocyte-specific overexpression of various splice isoforms and phospho-isoforms of α-adducin in identified Thr445/Thr480 phosphorylation of a short isoform of α-adducin as a potent inducer of neonatal cardiomyocyte sarcomere disassembly. Concomitant overexpression of this α-adducin variant along with γ-adducin resulted in stabilization of the adducin complex and persistent sarcomere disassembly in adult mice, which is mediated by interaction with α-actinin. CONCLUSIONS: These results highlight an important mechanism for coordinating cytoskeletal morphological changes during cardiomyocyte mitosis.

2.
Virulence ; 13(1): 1031-1048, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35734825

RESUMEN

The ongoing COVID-19 pandemic caused a significant loss of human lives and a worldwide decline in quality of life. Treatment of COVID-19 patients is challenging, and specific treatments to reduce COVID-19 aggravation and mortality are still necessary. Here, we describe the discovery of a novel class of epiandrosterone steroidal compounds with cationic amphiphilic properties that present antiviral activity against SARS-CoV-2 in the low micromolar range. Compounds were identified in screening campaigns using a cytopathic effect-based assay in Vero CCL81 cells, followed by hit compound validation and characterization. Compounds LNB167 and LNB169 were selected due to their ability to reduce the levels of infectious viral progeny and viral RNA levels in Vero CCL81, HEK293, and HuH7.5 cell lines. Mechanistic studies in Vero CCL81 cells indicated that LNB167 and LNB169 inhibited the initial phase of viral replication through mechanisms involving modulation of membrane lipids and cholesterol in host cells. Selection of viral variants resistant to steroidal compound treatment revealed single mutations on transmembrane, lipid membrane-interacting Spike and Envelope proteins. Finally, in vivo testing using the hACE2 transgenic mouse model indicated that SARS-CoV-2 infection could not be ameliorated by LNB167 treatment. We conclude that anti-SARS-CoV-2 activities of steroidal compounds LNB167 and LNB169 are likely host-targeted, consistent with the properties of cationic amphiphilic compounds that modulate host cell lipid biology. Although effective in vitro, protective effects were cell-type specific and did not translate to protection in vivo, indicating that subversion of lipid membrane physiology is an important, yet complex mechanism involved in SARS-CoV-2 replication and pathogenesis.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Antivirales/farmacología , Chlorocebus aethiops , Células HEK293 , Humanos , Lípidos , Ratones , Pandemias , Calidad de Vida , Células Vero , Replicación Viral
3.
STAR Protoc ; 2(4): 100950, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34820638

RESUMEN

Isolation and culture of ventricular cardiomyocytes from neonatal rats (NRVMs) is a powerful model to study neonatal cardiac development, cell cycle regulation, and cardiac physiology and pathology in vitro. Here, we present our modified enzymatic digestion protocol followed by two-step discontinuous Percoll gradient centrifugation to isolate a high yield of viable ventricular cardiomyocytes from neonatal rats. Finally, here we describe an immunostaining protocol for cytosolic and nuclear staining of NRVMs. For complete details on the use and execution of this protocol, please refer to Pereira et al. (2020).


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Ventrículos Cardíacos/citología , Inmunohistoquímica/métodos , Miocitos Cardíacos/citología , Animales , Animales Recién Nacidos , Separación Celular/métodos , Células Cultivadas , Ratas
4.
Circulation ; 141(22): 1787-1799, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32272846

RESUMEN

BACKGROUND: Primary valvular heart disease is a prevalent cause of morbidity and mortality in both industrialized and developing countries. Although the primary consequence of valvular heart disease is myocardial dysfunction, treatment of valvular heart diseases centers around valve repair or replacement rather than prevention or reversal of myocardial dysfunction. This is particularly evident in primary mitral regurgitation (MR), which invariably results in eccentric hypertrophy and left ventricular (LV) failure in the absence of timely valve repair or replacement. The mechanism of LV dysfunction in primary severe MR is entirely unknown. METHODS: Here, we developed the first mouse model of severe MR. Valvular damage was achieved by severing the mitral valve leaflets and chords with iridectomy scissors, and MR was confirmed by echocardiography. Serial echocardiography was performed to follow up LV morphology and systolic function. Analysis of cardiac tissues was subsequently performed to evaluate valve deformation, cardiomyocyte morphology, LV fibrosis, and cell death. Finally, dysregulated pathways were assessed by RNA-sequencing analysis and immunofluorescence. RESULTS: In the ensuing 15 weeks after the induction of MR, gradual LV dilatation and dysfunction occurred, resulting in severe systolic dysfunction. Further analysis revealed that severe MR resulted in a marked increase in cardiac mass and increased cardiomyocyte length but not width, with electron microscopic evidence of sarcomere disarray and the development of sarcomere disruption. From a mechanistic standpoint, severe MR resulted in activation of multiple components of both the mammalian target of rapamycin and calcineurin pathways. Inhibition of mammalian target of rapamycin signaling preserved sarcomeric structure and prevented LV remodeling and systolic dysfunction. Immunohistochemical analysis uncovered a differential pattern of expression of the cell polarity regulator Crb2 (crumbs homolog 2) along the longitudinal axis of cardiomyocytes and close to the intercalated disks in the MR hearts. Electron microscopy images demonstrated a significant increase in polysome localization in close proximity to the intercalated disks and some areas along the longitudinal axis in the MR hearts. CONCLUSIONS: These results indicate that LV dysfunction in response to severe MR is a form of maladaptive eccentric cardiomyocyte hypertrophy and outline the link between cell polarity regulation and spatial localization protein synthesis as a pathway for directional cardiomyocyte growth.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia de la Válvula Mitral/patología , Miocitos Cardíacos/patología , Animales , Moléculas de Adhesión Celular/biosíntesis , Moléculas de Adhesión Celular/genética , Forma de la Célula , Tamaño de la Célula , Ecocardiografía , Fibrosis , Perfilación de la Expresión Génica , Hipertrofia , Bombas de Infusión Implantables , Imagen por Resonancia Magnética , Masculino , Ratones , Válvula Mitral/lesiones , Insuficiencia de la Válvula Mitral/complicaciones , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Miocitos Cardíacos/metabolismo , Polirribosomas/ultraestructura , ARN Mensajero/biosíntesis , Sirolimus/farmacología , Sirolimus/uso terapéutico , Sístole , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/fisiología , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/patología
5.
PLoS Negl Trop Dis ; 11(2): e0005363, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28231241

RESUMEN

The teratogenic mechanisms triggered by ZIKV are still obscure due to the lack of a suitable animal model. Here we present a mouse model of developmental disruption induced by ZIKV hematogenic infection. The model utilizes immunocompetent animals from wild-type FVB/NJ and C57BL/6J strains, providing a better analogy to the human condition than approaches involving immunodeficient, genetically modified animals, or direct ZIKV injection into the brain. When injected via the jugular vein into the blood of pregnant females harboring conceptuses from early gastrulation to organogenesis stages, akin to the human second and fifth week of pregnancy, ZIKV infects maternal tissues, placentas and embryos/fetuses. Early exposure to ZIKV at developmental day 5 (second week in humans) produced complex manifestations of anterior and posterior dysraphia and hydrocephalus, as well as severe malformations and delayed development in 10.5 days post-coitum (dpc) embryos. Exposure to the virus at 7.5-9.5 dpc induces intra-amniotic hemorrhage, widespread edema, and vascular rarefaction, often prominent in the cephalic region. At these stages, most affected embryos/fetuses displayed gross malformations and/or intrauterine growth restriction (IUGR), rather than isolated microcephaly. Disrupted conceptuses failed to achieve normal developmental landmarks and died in utero. Importantly, this is the only model so far to display dysraphia and hydrocephalus, the harbinger of microcephaly in humans, as well as arthrogryposis, a set of abnormal joint postures observed in the human setting. Late exposure to ZIKV at 12.5 dpc failed to produce noticeable malformations. We have thus characterized a developmental window of opportunity for ZIKV-induced teratogenesis encompassing early gastrulation, neurulation and early organogenesis stages. This should not, however, be interpreted as evidence for any safe developmental windows for ZIKV exposure. Late developmental abnormalities correlated with damage to the placenta, particularly to the labyrinthine layer, suggesting that circulatory changes are integral to the altered phenotypes.


Asunto(s)
Artrogriposis/virología , Modelos Animales de Enfermedad , Hidrocefalia/virología , Complicaciones Infecciosas del Embarazo/virología , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Artrogriposis/embriología , Artrogriposis/inmunología , Artrogriposis/patología , Femenino , Humanos , Hidrocefalia/embriología , Hidrocefalia/inmunología , Hidrocefalia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Placenta/anomalías , Placenta/inmunología , Placenta/virología , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/patología , Teratógenos/análisis , Infección por el Virus Zika/embriología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/patología
6.
Structure ; 24(8): 1301-1310, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27427476

RESUMEN

Focal adhesion kinase (FAK) has emerged as a mediator of mechanotransduction in cardiomyocytes, regulating gene expression during hypertrophic remodeling. However, how FAK signaling is relayed onward to the nucleus is unclear. Here, we show that FAK interacts with and regulates myocyte enhancer factor 2 (MEF2), a master cardiac transcriptional regulator. In cardiomyocytes exposed to biomechanical stimulation, FAK accumulates in the nucleus, binds to and upregulates the transcriptional activity of MEF2 through an interaction with the FAK focal adhesion targeting (FAT) domain. In the crystal structure (2.9 Å resolution), FAT binds to a stably folded groove in the MEF2 dimer, known to interact with regulatory cofactors. FAK cooperates with MEF2 to enhance the expression of Jun in cardiomyocytes, an important component of hypertrophic response to mechanical stress. These findings underscore a connection between the mechanotransduction involving FAK and transcriptional regulation by MEF2, with potential relevance to the pathogenesis of cardiac disease.


Asunto(s)
Quinasa 1 de Adhesión Focal/química , Mecanotransducción Celular , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-jun/química , Transcripción Genética , Secuencias de Aminoácidos , Animales , Animales Recién Nacidos , Sitios de Unión , Línea Celular , Núcleo Celular/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Cinética , Factores de Transcripción MEF2/química , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones , Modelos Moleculares , Miocitos Cardíacos/citología , Cultivo Primario de Células , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...