Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(40): 46747-46755, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37782693

RESUMEN

Point-of-care (POC) devices can provide inexpensive, practical, and expedited solutions for applications ranging from biomedicine to environmental monitoring. This work reports on the development of low-cost microfluidic substrates for POC systems suitable for analytical assays, while also satisfying the need for social and environmentally conscious practices regarding circular economy, waste reduction, and the use of local resources. Thus, an innovative greener process to extract cellulose from plants including abaca, cotton, kozo, linen, and sisal, originating from different places around the world, is developed, and then the corresponding paper substrates are obtained to serve as platforms for POC assays. Hydrophobic wax is used to delineate channels that are able to guide solutions into chambers where the colorimetric assay for total cholesterol quantification is carried out as a proof of concept. Morphological and physicochemical analyses are performed, including the evaluation of fiber diameter, shape and density, and mechanical and thermal properties, together with peel adhesion of the printed wax channels. Contact angle and capillary flow tests ascertain the suitability of the substrates for liquid assays and overall viability as low-cost, sustainable microfluidic substrates for POC applications.


Asunto(s)
Técnicas Analíticas Microfluídicas , Papel , Colorimetría , Bosque Lluvioso , Celulosa , Bioensayo , Sistemas de Atención de Punto , Dispositivos Laboratorio en un Chip
2.
Chem Rev ; 123(19): 11392-11487, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37729110

RESUMEN

From scientific and technological points of view, poly(vinylidene fluoride), PVDF, is one of the most exciting polymers due to its overall physicochemical characteristics. This polymer can crystalize into five crystalline phases and can be processed in the form of films, fibers, membranes, and specific microstructures, being the physical properties controllable over a wide range through appropriate chemical modifications. Moreover, PVDF-based materials are characterized by excellent chemical, mechanical, thermal, and radiation resistance, and for their outstanding electroactive properties, including high dielectric, piezoelectric, pyroelectric, and ferroelectric response, being the best among polymer systems and thus noteworthy for an increasing number of technologies. This review summarizes and critically discusses the latest advances in PVDF and its copolymers, composites, and blends, including their main characteristics and processability, together with their tailorability and implementation in areas including sensors, actuators, energy harvesting and storage devices, environmental membranes, microfluidic, tissue engineering, and antimicrobial applications. The main conclusions, challenges and future trends concerning materials and application areas are also presented.

3.
ACS Sens ; 8(8): 3032-3042, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37467113

RESUMEN

Health initiatives worldwide demand affordable point-of-care devices to aid in the reduction of morbidity and mortality rates of high-incidence infectious and noncommunicable diseases. However, the production of robust and reliable easy-to-use diagnostic platforms showing the ability to quantitatively measure several biomarkers in physiological fluids and that could in turn be decentralized to reach any relevant environment remains a challenge. Here, we show the particular combination of paper-microfluidic technology, electrochemical transduction, and magnetic nanoparticle-based immunoassay approaches to produce a unique, compact, and easily deployable multiplex device to simultaneously measure interleukin-8, tumor necrosis factor-α, and myeloperoxidase biomarkers in sputum, developed with the aim of facilitating the timely detection of acute exacerbations of chronic obstructive pulmonary disease. The device incorporates an on-chip electrochemical cell array and a multichannel paper component, engineered to be easily aligned into a polymeric cartridge and exchanged if necessary. Calibration curves at clinically relevant biomarker concentration ranges are produced in buffer and artificial sputum. The analysis of sputum samples of healthy individuals and acutely exacerbated patients produces statistically significant biomarker concentration differences between the two studied groups. The device can be mass-produced at a low cost, being an easily adaptable platform for measuring other disease-related target biomarkers.


Asunto(s)
Microfluídica , Nanopartículas , Humanos , Esputo , Sistemas de Atención de Punto , Biomarcadores/análisis
4.
Biomater Adv ; 151: 213438, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37121084

RESUMEN

The physico-chemical properties of the scaffold materials used for tissue regeneration strategies have a direct impact on cell shape, adhesion, proliferation, phenotypic and differentiation. Herewith, biophysical and biochemical cues have been widely used to design and develop biomaterial systems for specific tissue engineering strategies. In this context, the patterning of piezoelectric polymers that can provide electroactive stimuli represents a suitable strategy for skeletal muscle tissue engineering applications once it has been demonstrated that mechanoelectrical stimuli promote C2C12 myoblast differentiation. In this sense, this works reports on how C2C12 myoblast cells detect and react to physical and biochemical stimuli based on micropatterned poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive scaffolds produced by soft lithography in the form of arrays of lines and hexagons (anisotropic and isotropic morphology, respectively) combined with differentiation medium. The scaffolds were evaluated for the proliferation and differentiation of C2C12 myoblast cell line and it is demonstrated that anisotropic microstructures promote muscle differentiation which is further reinforced with the introduction of biochemical stimulus. However, when the physical stimulus is not adequate to the tissue, e.g. isotropic microstructure, the biochemical stimulus has the opposite effect, hindering the differentiation process. Therefore, the proper morphological design of the scaffold combined with biochemical stimulus allows to enhance skeletal muscle differentiation and allows the development of advanced strategies for effective muscle tissue engineering.


Asunto(s)
Materiales Biocompatibles , Andamios del Tejido , Andamios del Tejido/química , Diferenciación Celular/fisiología , Ingeniería de Tejidos , Mioblastos/metabolismo
5.
Adv Healthc Mater ; 12(18): e2202936, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36898671

RESUMEN

The clinical translations of drugs and nanomedicines depend on coherent pharmaceutical research based on biologically accurate screening approaches. Since establishing the 2D in vitro cell culture method, the scientific community has improved cell-based drug screening assays and models. Those advances result in more informative biochemical assays and the development of 3D multicellular models to describe the biological complexity better and enhance the simulation of the in vivo microenvironment. Despite the overall dominance of conventional 2D and 3D cell macroscopic culture methods, they present physicochemical and operational challenges that impair the scale-up of drug screening by not allowing a high parallelization, multidrug combination, and high-throughput screening. Their combination and complementarity with microfluidic platforms enable the development of microfluidics-based cell culture platforms with unequivocal advantages in drug screening and cell therapies. Thus, this review presents an updated and consolidated view of cell culture miniaturization's physical, chemical, and operational considerations in the pharmaceutical research scenario. It clarifies advances in the field using gradient-based microfluidics, droplet-based microfluidics, printed-based microfluidics, digital-based microfluidics, SlipChip, and paper-based microfluidics. Finally, it presents a comparative analysis of the performance of cell-based methods in life research and development to achieve increased precision in the drug screening process.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Microfluídica , Microfluídica/métodos , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Tratamiento Basado en Trasplante de Células y Tejidos , Técnicas de Cultivo de Célula
6.
Biomedicines ; 10(5)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35625942

RESUMEN

Stimuli-responsive liposomes are a class of nanocarriers whose drug release occurs, preferentially, when exposed to a specific biological environment, to an external stimulus, or both. This work is focused on the design of solid magnetoliposomes (SMLs) as lipid-based nanosystems aiming to obtain multi-stimuli-responsive vesicles for doxorubicin (DOX) controlled release in pathological areas under the action of thermal, magnetic, and pH stimuli. The effect of lipid combinations on structural, colloidal stability, and thermodynamic parameters were evaluated. The results confirmed the reproducibility for SMLs synthesis based on nine lipid formulations (combining DPPC, DSPC, CHEMS, DOPE and/or DSPE-PEG), with structural and colloidal properties suitable for biological applications. A loss of stability and thermosensitivity was observed for formulations containing dioleoylphosphatidylethanolamine (DOPE) lipid. SMLs PEGylation is an essential step to enhance both their long-term storage stability and stealth properties. DOX encapsulation (encapsulation efficiency ranging between 87% and 96%) in the bilayers lowered its pKa, which favors the displacement of DOX from the acyl chains to the surface when changing from alkaline to acidic pH. The release profiles demonstrated a preferential release at acidic pH, more pronounced under mimetic mild-hyperthermia conditions (42 °C). Release kinetics varied with the lipid formulation, generally demonstrating hyperthermia temperatures and acidic pH as determining factors in DOX release; PEGylation was shown to act as a diffusion barrier on the SMLs surface. The integrated assessment and characterization of SMLs allows tuning lipid formulations that best respond to the needs for specific controlled release profiles of stimuli-responsive nanosystems as a multi-functional approach to cancer targeting and therapy.

7.
ACS Appl Mater Interfaces ; 14(11): 13013-13024, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35282678

RESUMEN

Biomimicking biological niches of healthy tissues or tumors can be achieved by means of artificial microenvironments, where structural and mechanical properties are crucial parameters to promote tissue formation and recreate natural conditions. In this work, three-dimensional (3D) scaffolds based on woodpile structures were fabricated by two-photon polymerization (2PP) of different photosensitive polymers (IP-S and SZ2080) and hydrogels (PEGDA 700) using two different 2PP setups, a commercial one and a customized one. The structures' properties were tuned to study the effect of scaffold dimensions (gap size) and their mechanical properties on the adhesion and proliferation of bone marrow mesenchymal stem cells (BM-MSCs), which can serve as a model for leukemic diseases, among other hematological applications. The woodpile structures feature gap sizes of 25, 50, and 100 µm and a fixed beam diameter of 25 µm, to systematically study the optimal cell colonization that promotes healthy cell growth and potential tissue formation. The characterization of the scaffolds involved scanning electron microscopy and mechanical nanoindenting, while their suitability for supporting cell growth was evaluated with live/dead cell assays and multistaining 3D confocal imaging. In the mechanical assays of the hydrogel material, we observed two different stiffness ranges depending on the indentation depth. Larger gap woodpile structures coated with fibronectin were identified as the most promising scaffolds for 3D BM-MSC cellular models, showing higher proliferation rates. The results indicate that both the design and the employed materials are suitable for further assays, where retaining the BM-MSC stemness and original features is crucial, including studies focused on BM disorders such as leukemia and others. Moreover, the combination of 3D scaffold geometry and materials holds great potential for the investigation of cellular behaviors in a co-culture setting, for example, mesenchymal and hematopoietic stem cells, to be further applied in medical research and pharmacological studies.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Células de la Médula Ósea , Diferenciación Celular , Técnicas de Cocultivo , Hidrogeles/química , Hidrogeles/farmacología , Polímeros/química , Polímeros/farmacología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
8.
ACS Appl Polym Mater ; 4(8): 5368-5379, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36824683

RESUMEN

Poly(vinylidene fluoride) (PVDF) combined with cobalt ferrite (CFO) particles is one of the most common and effective polymeric magnetoelectric composites. Processing PVDF into its electroactive phase is a mandatory condition for featuring electroactive behavior and specific (post)processing may be needed to achieve this state, although electroactive phase crystallization is favored at processing temperatures below 60 °C. Different techniques are used to process PVDF-CFO nanocomposite structures into microspheres with high CFO dispersion, with microfluidics adding the advantages of high reproducibility, size tunability, and time and resource efficiency. In this work, magnetoelectric microspheres are produced in a one-step approach. We describe the production of high content electroactive phase PVDF and PVDF-CFO microspheres using microfluidic technology. A flow-focusing polydimethylsiloxane device is fabricated based on a 3D printed polylactic acid master, which enables the production of spherical microspheres with mean diameters ranging from 80 to 330 µm. The microspheres feature internal and external cavernous structures and good CFO distribution with an encapsulation efficacy of 80% and prove to be in the electroactive γ-phase with a mean content of 75%. The microspheres produced using this approach show suitable characteristics as active materials for tissue regeneration strategies and other piezoelectric polymer applications.

9.
ACS Appl Mater Interfaces ; 13(15): 18065-18076, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33843194

RESUMEN

Portable analytical systems are increasingly required for clinical analysis or environmental monitoring, among others, being materials with tailored physicochemical properties among the main needs for successful functional implementation. This article describes the processing of fluorinated poly(vinylidene-co-trifluorethylene), P(VDF-TrFE), membranes with tailored morphological and physicochemical properties to be used as microfluidic substrates for portable analytical systems, commonly called point-of-care systems in the medical field. The morphology of the developed membranes includes spherulitic, porous, randomly oriented, and oriented fibers. Furthermore, the processed hydrophobic P(VDF-TrFE) membranes were post-treated by oxygen plasma to make them superhydrophilic. The influence of morphology and plasma treatment on the physicochemical properties and capillary flow rates was evaluated. Microfluidic systems were then designed and printed by wax printing for the colorimetric quantification of glucose. The systems comprise eight reaction chambers, each glucose concentration (25, 50, 75, and 100 mg dL-1) being measured in two reaction chambers separately and at the same time. The results demonstrate the suitability of the developed microfluidic substrates based on their tailorable morphology, improved capillary flow rate, wax print quality, homogeneous generation of colorimetric reaction, and excellent mechanical properties. Finally, the possibility of being reused, along with their electroactive properties, can lead to a new generation of microfluidic substrates based on fluorinated membranes.


Asunto(s)
Bioensayo/métodos , Colorimetría/métodos , Halogenación , Hidrocarburos Fluorados/química , Membranas Artificiales , Compuestos de Vinilo/química , Dispositivos Laboratorio en un Chip , Fenómenos Mecánicos
10.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171761

RESUMEN

The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive micropatterned scaffolds on the proliferation and differentiation of bone cells. For that, micropatterned P(VDF-TrFE) scaffolds were produced by lithography in the form of arrays of lines and hexagons and then tested for cell proliferation and differentiation of pre-osteoblast cell line. Results show that more anisotropic surface microstructures promote bone differentiation without the need of further biochemical stimulation. Thus, the combination of specific patterns with the inherent electroactivity of materials provides a promising platform for bone regeneration.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Hidrocarburos Fluorados/química , Ingeniería de Tejidos/métodos , Compuestos de Vinilo/química , Células 3T3 , Animales , Materiales Biocompatibles/química , Huesos/metabolismo , Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Supervivencia Celular , Hidrocarburos Fluorados/farmacología , Ratones , Osteoblastos/metabolismo , Osteogénesis , Polivinilos/química , Andamios del Tejido/química , Titanio/química , Compuestos de Vinilo/farmacología
11.
ACS Appl Mater Interfaces ; 12(1): 60-69, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31808332

RESUMEN

Novel microfluidic substrates based on electrospun poly(l-lactic acid) (PLLA) membranes were developed to increase the limited range of commercially available paper substrates, commonly used for the fabrication of microfluidic paper-based analytical devices. PLLA's advantageous properties include biodegradability, biocompatibility, ease of being processed in various tailored morphologies, and cost effectiveness, among others. Oriented and nonoriented electrospun PLLA membranes were fabricated using electrospinning and the influence of fiber orientation, addition of hydrophilic additives, and plasma treatments on the morphology, physicochemical properties, and capillary flow rates were evaluated and compared with the commercial Whatman paper. In addition, a proof-of-concept application based on the colorimetric detection of glucose in printed PLLA and paper-based microfluidic systems was also performed. The results show the potential of PLLA substrates for the fabrication of portable, disposable, eco-friendly, and cost-effective microfluidic systems with controllable properties that can be tailored according to specific biotechnological application requirements, being a suitable alternative to conventional paper-based substrates.

12.
ACS Appl Bio Mater ; 2(4): 1591-1602, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35026893

RESUMEN

Electroactive polymers are being increasingly used in tissue engineering applications. Together with the electromechanical clues, morphological ones have been demonstrated to determine cell proliferation and differentiation. This work reports on the micropatterning of poly(vinylidene fluoride-co-trifluoroethylene), P(VDF-TrFE) scaffolds, and their interaction with myoblast and preosteoblasts cell lines, selected based on their different functional morphology. The scaffolds were obtained by soft lithography and obtained in the form of arrays of lines, intermittent lines, hexagons, linear zigzags, and curved zigzags with dimensions of 25, 75, and 150 µm. Moreover, the scaffolds were tested in cell adhesion assays of myoblasts and preosteoblasts cell lines. The results show that more linear surface topographies and dense morphology have a large potential in the regeneration of musculoskeletal tissue, while nonpatterned scaffolds or more anisotropic surface microstructures present largest potential to promote the growth and regeneration of bone tissue. In this way, cell adhesion site, orientation, and elongation can be controlled by choosing properly the topography and morphology of the scaffolds, indicating their suitability and potential for further proliferation and differentiation assays.

13.
Nat Protoc ; 13(4): 681-704, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29543796

RESUMEN

Poly(vinylidene fluoride) (PVDF) and its copolymers are the polymers with the highest dielectric constants and electroactive responses, including piezoelectric, pyroelectric and ferroelectric effects. This semicrystalline polymer can crystallize in five different forms, each related to a different chain conformation. Of these different phases, the ß phase is the one with the highest dipolar moment and the highest piezoelectric response; therefore, it is the most interesting for a diverse range of applications. Thus, a variety of processing methods have been developed to induce the formation of the polymer ß phase. In addition, PVDF has the advantage of being easily processable, flexible and low-cost. In this protocol, we present a number of reproducible and effective methods to produce ß-PVDF-based morphologies/structures in the form of dense films, porous films, 3D scaffolds, patterned structures, fibers and spheres. These structures can be fabricated by different processing techniques, including doctor blade, spin coating, printing technologies, non-solvent-induced phase separation (NIPS), temperature-induced phase separation (TIPS), solvent-casting particulate leaching, solvent-casting using a 3D nylon template, freeze extraction with a 3D poly(vinyl alcohol) (PVA) template, replica molding, and electrospinning or electrospray, with the fabrication method depending on the desired characteristics of the structure. The developed electroactive structures have shown potential to be used in a wide range of applications, including the formation of sensors and actuators, in biomedicine, for energy generation and storage, and as filtration membranes.


Asunto(s)
Fenómenos Electromagnéticos , Microtecnología/métodos , Polivinilos/química
14.
Polymers (Basel) ; 10(2)2018 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30966197

RESUMEN

Fluorinated polymers constitute a unique class of materials that exhibit a combination of suitable properties for a wide range of applications, which mainly arise from their outstanding chemical resistance, thermal stability, low friction coefficients and electrical properties. Furthermore, those presenting stimuli-responsive properties have found widespread industrial and commercial applications, based on their ability to change in a controlled fashion one or more of their physicochemical properties, in response to single or multiple external stimuli such as light, temperature, electrical and magnetic fields, pH and/or biological signals. In particular, some fluorinated polymers have been intensively investigated and applied due to their piezoelectric, pyroelectric and ferroelectric properties in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. This review summarizes the main characteristics, microstructures and biomedical applications of electroactive fluorinated polymers.

15.
Colloids Surf B Biointerfaces ; 157: 48-55, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575740

RESUMEN

Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg-1 at the optimum binding pH buffer.


Asunto(s)
Magnetismo , Proteínas/química , Dióxido de Silicio/química , Zinc/química , Adsorción , Biotecnología , Histidina/química , Concentración de Iones de Hidrógeno
16.
Sci Technol Adv Mater ; 11(4): 045006, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27877355

RESUMEN

Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the ß-phase of poly(vinylidene fluoride) (ß-PVDF). If the analysis is performed using optical absorption spectroscopy and ß-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO) and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that ß-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...