Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Comput Chem ; 45(13): 1002-1007, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38206886

RESUMEN

In this article, we employed concepts from Density Functional Theory to investigate the interaction energy behavior between the fragments of two-dimensional systems composed of graphene-based materials and lithium ions. Specifically, the proposed system consists of two graphene sheets separated by a controlled distance (face-to-face), with a lithium ion positioned at the center of this separation. Additionally, we examined potential electronic transitions within these systems and assessed the feasibility of quantum entanglement generation and manipulation. Our findings revealed that the interaction energies within the analyzed systems exhibited behavior akin to that described by the Lennard-Jones potential, which characterizes systems with favorable energy for their formation. The results further yielded estimates for the constants ϵ and σ , with values of - 66 . 59  kcal/mol and 1.63  Å , respectively. Specific electronic transitions were identified, suggesting the potential for quantum entanglement generation and manipulation among the two-dimensional graphene system mediated by the lithium ion interactions.

2.
Phys Rev E ; 103(5-1): 052210, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34134255

RESUMEN

In this paper we investigate the existence of Anderson localization induced by one specific component of a binary Bose-Einstein condensate (BEC). We use a mean-field approach, in which each type of particle of the BEC is considered as a specific field, and we consider that only one kind of particle is subject to a quasiperiodic potential, which induces a localization in the partner field. We assume the system is under a Rabi coupling, i.e., a linear coupling mixing the two-field component, and we investigate the conditions associated with the parameter values of the system for observing the localization. Numerical simulations are performed, confirming the existence of Anderson localization in the partner field.

3.
J Mol Struct ; 1225: 129143, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32863430

RESUMEN

In this paper we investigate 10 different HIV protease inhibitors (HPIs) as possible repurposed-drugs candidates against SARS-CoV-2. To this end, we execute molecular docking and molecular dynamics simulations. The in silico data demonstrated that, despite their molecular differences, all HPIs presented a similar behavior for the parameters analyzed, with the exception of Nelfinavir that showed better results for most of the molecular dynamics parameters in comparison with the N3 inhibitor.

4.
Phys Rev E ; 102(4-1): 042209, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33212641

RESUMEN

We revisit the problem of the reduction of the three-dimensional (3D) dynamics of Bose-Einstein condensates, under the action of strong confinement in one direction (z), to a 2D mean-field equation. We address this problem for the confining potential with a singular term, viz., V_{z}(z)=2z^{2}+ζ^{2}/z^{2}, with constant ζ. A quantum phase transition is induced by the latter term, between the ground state (GS) of the harmonic oscillator and the 3D condensate split in two parallel noninteracting layers, which is a manifestation of the "superselection" effect. A realization of the respective physical setting is proposed, making use of resonant coupling to an optical field, with the resonance detuning modulated along z. The reduction of the full 3D Gross-Pitaevskii equation (GPE) to the 2D nonpolynomial Schrödinger equation (NPSE) is based on the factorized ansatz, with the z -dependent multiplier represented by an exact GS solution of the 1D Schrödinger equation with potential V_{z}(z). For both repulsive and attractive signs of the nonlinearity, the 2D NPSE produces GS and vortex states, that are virtually indistinguishable from the respective numerical solutions provided by full 3D GPE. In the case of the self-attraction, the threshold for the onset of the collapse, predicted by the 2D NPSE, is also virtually identical to its counterpart obtained from the 3D equation. In the same case, stability and instability of vortices with topological charge S=1, 2, and 3 are considered in detail. Thus, the procedure of the spatial-dimension reduction, 3D → 2D, produces very accurate results, and it may be used in other settings.

5.
J Phys Chem A ; 123(9): 1790-1795, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30758962

RESUMEN

In this work, we propose and investigate numerically the electronic transitions of a new system useful for quantum information tasks composed by a graphene quantum dot (GQD) interacting with two Li+ ions in opposed facing directions. By changing the distance of the Li+ ions, we find a region in which only electronic transitions of GQD → Li+ are allowed. Notably, into this region emerges the possibility of controlled electronic transitions for both ions in the symmetric case via appropriate external electric fields. Finally, the robust entanglement generation arises since it is possible to inhibit the electronic transition back to GQD by grounding it.

6.
Sci Rep ; 7(1): 16876, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29203821

RESUMEN

Lugiato-Lefever (LL) equations in one and two dimensions (1D and 2D) accurately describe the dynamics of optical fields in pumped lossy cavities with the intrinsic Kerr nonlinearity. The external pump is usually assumed to be uniform, but it can be made tightly focused too-in particular, for building small pixels. We obtain solutions of the LL equations, with both the focusing and defocusing intrinsic nonlinearity, for 1D and 2D confined modes supported by the localized pump. In the 1D setting, we first develop a simple perturbation theory, based in the sech ansatz, in the case of weak pump and loss. Then, a family of exact analytical solutions for spatially confined modes is produced for the pump focused in the form of a delta-function, with a nonlinear loss (two-photon absorption) added to the LL model. Numerical findings demonstrate that these exact solutions are stable, both dynamically and structurally (the latter means that stable numerical solutions close to the exact ones are found when a specific condition, necessary for the existence of the analytical solution, does not hold). In 2D, vast families of stable confined modes are produced by means of a variational approximation and full numerical simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...