Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cell Death Dis ; 15(5): 334, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744890

RESUMEN

The prevalence of diabetes steadily increases worldwide mirroring the prevalence of obesity. Endoplasmic reticulum (ER) stress is activated in diabetes and contributes to ß-cell dysfunction and apoptosis through the activation of a terminal unfolded protein response (UPR). Our results uncover a new role for Bax Inhibitor-One (BI-1), a negative regulator of inositol-requiring enzyme 1 (IRE1α) in preserving ß-cell health against terminal UPR-induced apoptosis and pyroptosis in the context of supraphysiological loads of insulin production. BI-1-deficient mice experience a decline in endocrine pancreatic function in physiological and pathophysiological conditions, namely obesity induced by high-fat diet (HFD). We observed early-onset diabetes characterized by hyperglycemia, reduced serum insulin levels, ß-cell loss, increased pancreatic lipases and pro-inflammatory cytokines, and the progression of metabolic dysfunction. Pancreatic section analysis revealed that BI-1 deletion overburdens unfolded proinsulin in the ER of ß-cells, confirmed by ultrastructural signs of ER stress with overwhelmed IRE1α endoribonuclease (RNase) activity in freshly isolated islets. ER stress led to ß-cell dysfunction and islet loss, due to an increase in immature proinsulin granules and defects in insulin crystallization with the presence of Rod-like granules. These results correlated with the induction of autophagy, ER phagy, and crinophagy quality control mechanisms, likely to alleviate the atypical accumulation of misfolded proinsulin in the ER. In fine, BI-1 in ß-cells limited IRE1α RNase activity from triggering programmed ß-cell death through apoptosis and pyroptosis (caspase-1, IL-1ß) via NLRP3 inflammasome activation and metabolic dysfunction. Pharmaceutical IRE1α inhibition with STF-083010 reversed ß-cell failure and normalized the metabolic phenotype. These results uncover a new protective role for BI-1 in pancreatic ß-cell physiology as a stress integrator to modulate the UPR triggered by accumulating unfolded proinsulin in the ER, as well as autophagy and programmed cell death, with consequences on ß-cell function and insulin secretion. In pancreatic ß-cells, BI-1-/- deficiency perturbs proteostasis with proinsulin misfolding, ER stress, terminal UPR with overwhelmed IRE1α/XBP1s/CHOP activation, inflammation, ß-cell programmed cell death, and diabetes.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Células Secretoras de Insulina , Proteínas de la Membrana , Proinsulina , Proteostasis , Respuesta de Proteína Desplegada , Animales , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Proinsulina/metabolismo , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Pliegue de Proteína , Endorribonucleasas/metabolismo , Ratones Endogámicos C57BL , Dieta Alta en Grasa , Ratones Noqueados , Masculino
2.
iScience ; 27(1): 108694, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38213620

RESUMEN

An altered gut microbiota is associated with type 1 diabetes (T1D), affecting the production of short-chain fatty acids (SCFA) and glucose homeostasis. We previously demonstrated that enhancing serum acetate and butyrate using a dietary supplement (HAMSAB) improved glycemia in non-obese diabetic (NOD) mice and patients with established T1D. The effects of SCFA on immune-infiltrated islet cells remain to be clarified. Here, we performed single-cell RNA sequencing on islet cells from NOD mice fed an HAMSAB or control diet. HAMSAB induced a regulatory gene expression profile in pancreas-infiltrated immune cells. Moreover, HAMSAB maintained the expression of ß-cell functional genes and decreased cellular stress. HAMSAB-fed mice showed preserved pancreatic endocrine cell identity, evaluated by decreased numbers of poly-hormonal cells. Finally, SCFA increased insulin levels in human ß-like cells and improved transplantation outcome in NOD/SCID mice. Our findings support the use of metabolite-based diet as attractive approach to improve glucose control in T1D.

3.
Mol Metab ; 69: 101681, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36707047

RESUMEN

OBJECTIVES: Type 1 diabetes (T1D) is caused by progressive immune-mediated loss of insulin-producing ß-cells. Inflammation is detrimental to ß-cell function and survival, moreover, both apoptosis and necrosis have been implicated as mechanisms of ß-cell loss in T1D. The receptor interacting serine/threonine protein kinase 1 (RIPK1) promotes inflammation by serving as a scaffold for NF-κB and MAPK activation, or by acting as a kinase that triggers apoptosis or necroptosis. It is unclear whether RIPK1 kinase activity is involved in T1D pathology. In the present study, we investigated if absence of RIPK1 activation would affect the susceptibility to immune-mediated diabetes or diet induced obesity (DIO). METHODS: The RIPK1 knockin mouse line carrying a mutation mimicking serine 25 phosphorylation (Ripk1S25D/S25D), which abrogates RIPK1 kinase activity, was utilized to assess the in vivo role of RIPK1 in immune-mediated diabetes or diet induced obesity (DIO). In vitro, ß-cell death and RIPK1 kinase activity was analysed in conditions known to induce RIPK1-dependent apoptosis/necroptosis. RESULTS: We demonstrate that Ripk1S25D/S25D mice presented normal glucose metabolism and ß-cell function. Furthermore, immune-mediated diabetes and DIO were not different between Ripk1S25D/S25D and Ripk1+/+ mice. Despite strong activation of RIPK1 kinase and other necroptosis effectors (RIPK3 and MLKL) by TNF+BV6+zVAD, no cell death was observed in mouse islets nor human ß-cells. CONCLUSION: Our results contrast recent literature showing that most cell types undergo necroptosis following RIPK1 kinase activation. This peculiarity may reflect an adaptation to the inability of ß-cells to proliferate and self-renewal.


Asunto(s)
Diabetes Mellitus Tipo 1 , Proteínas Quinasas , Ratones , Animales , Humanos , Proteínas Quinasas/metabolismo , Inflamación/metabolismo , Serina , Obesidad , Proteína Serina-Treonina Quinasas de Interacción con Receptores
4.
Nutrients ; 14(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36145242

RESUMEN

The loss of functional pancreatic ß-cell mass is an important hallmark of both type 1 and type 2 diabetes. The RNA-binding protein NOVA1 is expressed in human and rodent pancreatic ß-cells. Previous in vitro studies indicated that NOVA1 is necessary for glucose-stimulated insulin secretion and its deficiency-enhanced cytokine-induced apoptosis. Moreover, Bim, a proapoptotic protein, is differentially spliced and potentiates apoptosis in NOVA1-deficient ß-cells in culture. We generated two novel mouse models by Cre-Lox technology lacking Nova1 (ßNova1-/-) or Bim (ßBim-/-) in ß-cells. To test the impact of Nova1 or Bim deletion on ß-cell function, mice were subjected to multiple low-dose streptozotocin (MLD-STZ)-induced diabetes or high-fat diet-induced insulin resistance. ß-cell-specific Nova1 or Bim deficiency failed to affect diabetes development in response to MLD-STZ-induced ß-cell dysfunction and death evidenced by unaltered blood glucose levels and pancreatic insulin content. In addition, body composition, glucose and insulin tolerance test, and pancreatic insulin content were indistinguishable between control and ßNova1-/- or ßBim-/- mice on a high fat diet. Thus, Nova1 or Bim deletion in ß-cells does not impact on glucose homeostasis or diabetes development in mice. Together, these data argue against an in vivo role for the Nova1-Bim axis in ß-cells.


Asunto(s)
Proteína 11 Similar a Bcl2/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , Glucemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Glucosa/metabolismo , Humanos , Insulina , Células Secretoras de Insulina/metabolismo , Ratones , Antígeno Ventral Neuro-Oncológico , Obesidad/etiología , Obesidad/metabolismo , Proteínas de Unión al ARN/metabolismo , Estreptozocina
5.
Diabetes ; 70(2): 464-476, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33203694

RESUMEN

The single nucleotide polymorphism rs7804356 located in the Src kinase-associated phosphoprotein 2 (SKAP2) gene is associated with type 1 diabetes (T1D), suggesting SKAP2 as a causal candidate gene. The objective of the study was to investigate if SKAP2 has a functional role in the ß-cells in relation to T1D. In a cohort of children with newly diagnosed T1D, rs7804356 predicted glycemic control and residual ß-cell function during the 1st year after diagnosis. In INS-1E cells and rat and human islets, proinflammatory cytokines reduced the content of SKAP2. Functional studies revealed that knockdown of SKAP2 aggravated cytokine-induced apoptosis in INS-1E cells and primary rat ß-cells, suggesting an antiapoptotic function of SKAP2. In support of this, overexpression of SKAP2 afforded protection against cytokine-induced apoptosis, which correlated with reduced nuclear content of S536-phosphorylated nuclear factor-κB (NF-κB) subunit p65, lower nitric oxide production, and diminished CHOP expression indicative of decreased endoplasmic reticulum stress. Knockdown of CHOP partially counteracted the increase in cytokine-induced apoptosis caused by SKAP2 knockdown. In conclusion, our results suggest that SKAP2 controls ß-cell sensitivity to cytokines possibly by affecting the NF-κB-inducible nitric oxide synthase-endoplasmic reticulum stress pathway.


Asunto(s)
Apoptosis/genética , Glucemia/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Polimorfismo de Nucleótido Simple , Adolescente , Animales , Glucemia/genética , Niño , Preescolar , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Femenino , Técnicas de Silenciamiento del Gen , Genotipo , Control Glucémico , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Islotes Pancreáticos/metabolismo , Masculino , Ratas
6.
Front Med (Lausanne) ; 8: 761299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35211479

RESUMEN

BACKGROUND: Surfactant protein D (SP-D) and pulmonary club cell protein 16 (CC-16) are called "pneumoproteins" and are involved in host defense against oxidative stress, inflammation, and viral outbreak. This study aimed to determine the predictive value of these pneumoproteins on the incidence of acute respiratory distress syndrome (ARDS) or death in patients with coronavirus disease-2019 (COVID-19). METHODS: This retrospective study included 87 patients admitted to an emergency department. Blood samples were collected on three time points (days 1, 5, and 14 from hospital admission). SP-D and CC-16 serum levels were determined, and univariate and multivariate analyses considering confounding variables (age, body mass index, tobacco use, dyspnea, hypertension, diabetes mellitus, neutrophil-to-lymphocyte ratio) were performed. RESULTS: Based on the multivariate analysis, SP-D level on D1 was positively and slightly correlated with subsequent development of ARDS, independent of body mass index, dyspnea, and diabetes mellitus. CC-16 level on D1 was modestly and positively correlated with fatal outcome. A rise in SP-D between D1 and D5 and D1 and D14 had a strong negative association with incidence of ARDS. These associations were independent of tobacco use and neutrophil-to-lymphocyte ratio. CONCLUSIONS: Overall, our data reveal that increase in SP-D levels is a good prognostic factor for patients with COVID-19, and that initial CC-16 levels correlated with slightly higher risk of death. SP-D and CC-16 may prove useful to predict outcomes in patients with COVID-19.

7.
J Endocr Soc ; 2(7): 631-645, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29942927

RESUMEN

An important feature of type 2 diabetes is a decrease in ß-cell mass. Therefore, it is essential to find new approaches to stimulate ß-cell proliferation. We have previously shown that heterozygous inactivation of the Na+/Ca2+ exchanger (isoform 1; NCX1), a protein responsible for Ca2+ extrusion from cells, increases ß-cell proliferation, mass, and function in mice. Here, we show that Ncx1 inactivation also increases ß-cell proliferation in 2-year-old mice and that NCX1 inhibition in adult mice by four small molecules of the benzoxyphenyl family stimulates ß-cell proliferation both in vitro and in vivo. NCX1 inhibition by small interfering RNA or small molecules activates the calcineurin/nuclear factor of activated T cells (NFAT) pathway and inhibits apoptosis induced by the immunosuppressors cyclosporine A (CsA) and tacrolimus in insulin-producing cell. Moreover, NCX1 inhibition increases the expression of ß-cell-specific genes, such as Ins1, Ins2, and Pdx1, and inactivates/downregulates the tumor suppressors retinoblastoma protein (pRb) and miR-193a and the cell cycle inhibitor p53. Our data show that Na+/Ca2+ exchange is a druggable target to stimulate ß-cell function and proliferation. Specific ß-cell inhibition of Na+/Ca2+ exchange by phenoxybenzamyl derivatives may represent an innovative approach to promote ß-cell regeneration in diabetes and improve the efficiency of pancreatic islet transplantation for the treatment of the disease.

8.
J Mol Endocrinol ; 61(2): F1-F6, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29728424

RESUMEN

The prevalence of diabetes has reached 8.8% in worldwide population and is predicted to increase up to 10.4% by 2040. Thus, there is an urgent need for the development of means to treat or prevent this major disease. Due to its role in inflammatory responses, several studies demonstrated the importance of the transcription factor nuclear factor-κB (NF-κB) in both type 1 diabetes (T1D) and type 2 diabetes (T2D). The two major NF-κB pathways are the canonical and the non-canonical. The later pathway is activated by the NF-κB-inducing kinase (NIK) that triggers p100 processing into p52, which forms with RelB its main dimer. Cytokines mediating the activation of this pathway are present in the serum of T1D and T2D patients. Conversely, limited information is available regarding the role of the alternative pathway on diabetes development and ß-cell fate. In the present review, we will briefly describe the involvement of NF-κB on diabetes pathology and discuss new studies indicating an important role for the non-canonical NF-κB activation in ß-cell function and survival. The non-canonical NF-κB pathway is emerging as a novel potential target for the development of therapeutic strategies to treat or prevent diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , FN-kappa B/metabolismo , Animales , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Transducción de Señal/fisiología
9.
J Mol Endocrinol ; 61(1): 25-36, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29632026

RESUMEN

Type 1 diabetes is caused by an autoimmune assault that induces progressive beta-cell dysfunction and dead. Pro-inflammatory cytokines, such as interleukin 1 beta (IL1B), tumor necrosis factor (TNF) and interferon gamma (IFNG) contribute for beta-cell death, which involves the activation of the nuclear factor kappa B (NFκB) and c- Jun N-terminal kinase (JNK). Prolactin (PRL), a physiological mediator for beta-cell proliferation, was shown to protect beta cells against cytokines pro-apoptotic effects. We presently investigated the mechanisms involved in the protective effects of prolactin against cytokine-induced beta-cell death. The findings obtained indicate that STAT3 activation is involved in the anti-apoptotic role of PRL in rat beta cells. PRL prevents the activation of JNK via AKT and promotes a shift from expression of pro- to anti-apoptotic proteins downstream of the JNK cascade. Furthermore, PRL partially prevents the activation of NFκB and the transcription of its target genes IkBa, Fas, Mcp1, A20 and Cxcl10 and also decreases NO production. On the other hand, the pro-survival effects of PRL do not involve modulation of cytokine-induced endoplasmic reticulum stress. These results suggest that the beneficial effects of PRL in beta cells involve augmentation of anti-apoptotic mechanisms and, at the same time, reduction of pro-apoptotic effectors, rendering beta cells better prepared to deal with inflammatory insults. The better understanding of the pro-survival mechanisms modulated by PRL in beta cells can provide tools to prevent cell demise during an autoimmune attack or following islet transplantation.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Prolactina/farmacología , Animales , Western Blotting , Células Cultivadas , Femenino , Regiones Promotoras Genéticas/genética , ARN Interferente Pequeño/genética , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
10.
Cell Death Dis ; 9(2): 96, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367588

RESUMEN

Type 1 diabetes (T1D) results from ß-cell destruction due to concerted action of both innate and adaptive immune responses. Pro-inflammatory cytokines, such as interleukin-1ß and interferon-γ, secreted by the immune cells invading islets of Langerhans, contribute to pancreatic ß-cell death in T1D. Cytokine-induced endoplasmic reticulum (ER) stress plays a central role in ß-cell demise. ER stress can modulate autophagic response; however, no study addressed the regulation of autophagy during the pathophysiology of T1D. In this study, we document that cytokines activate the AMPK-ULK-1 pathway while inhibiting mTORC1, which stimulates autophagy activity in an ER stress-dependent manner. On the other hand, time-course analysis of LC3-II accumulation in autophagosomes revealed that cytokines block the autophagy flux in an ER stress independent manner, leading to the formation of large dysfunctional autophagosomes and worsening of ER stress. Cytokines rapidly impair lysosome function, leading to lysosome membrane permeabilization, Cathepsin B leakage and lysosomal cell death. Blocking cathepsin activity partially protects against cytokine-induced or torin1-induced apoptosis, whereas blocking autophagy aggravates cytokine-induced CHOP overexpression and ß-cell apoptosis. In conclusion, cytokines stimulate the early steps of autophagy while blocking the autophagic flux, which aggravate ER stress and trigger lysosomal cell death. Restoration of autophagy/lysosomal function may represent a novel strategy to improve ß-cell resistance in the context of T1D.


Asunto(s)
Apoptosis , Autofagia , Citocinas/toxicidad , Mediadores de Inflamación/toxicidad , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Catepsina B/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitofagia/efectos de los fármacos , Modelos Biológicos , Cuerpos Multivesiculares/efectos de los fármacos , Cuerpos Multivesiculares/metabolismo , Cuerpos Multivesiculares/ultraestructura , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Factor de Transcripción CHOP/metabolismo
11.
Diabetes ; 66(9): 2446-2458, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28667119

RESUMEN

Induction of endoplasmic reticulum stress and activation of the intrinsic apoptotic pathway is widely believed to contribute to ß-cell death in type 1 diabetes (T1D). MCL-1 is an antiapoptotic member of the BCL-2 protein family, whose depletion causes apoptosis in rodent ß-cells in vitro. Importantly, decreased MCL-1 expression was observed in islets from patients with T1D. We report here that MCL-1 downregulation is associated with cytokine-mediated killing of human ß-cells, a process partially prevented by MCL-1 overexpression. By generating a ß-cell-specific Mcl-1 knockout mouse strain (ßMcl-1KO), we observed that, surprisingly, MCL-1 ablation does not affect islet development and function. ß-Cells from ßMcl-1KO mice were, however, more susceptible to cytokine-induced apoptosis. Moreover, ßMcl-1KO mice displayed higher hyperglycemia and lower pancreatic insulin content after multiple low-dose streptozotocin treatment. We found that the kinase GSK3ß, the E3 ligases MULE and ßTrCP, and the deubiquitinase USP9x regulate cytokine-mediated MCL-1 protein turnover in rodent ß-cells. Our results identify MCL-1 as a critical prosurvival protein for preventing ß-cell death and clarify the mechanisms behind its downregulation by proinflammatory cytokines. Development of strategies to prevent MCL-1 loss in the early stages of T1D may enhance ß-cell survival and thereby delay or prevent disease progression.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Animales , Apoptosis/fisiología , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Diabetes Mellitus Experimental , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Interferencia de ARN
12.
J Mol Endocrinol ; 57(1): R1-R17, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27067637

RESUMEN

Insulin-secreting pancreatic ß-cells are extremely dependent on their endoplasmic reticulum (ER) to cope with the oscillatory requirement of secreted insulin to maintain normoglycemia. Insulin translation and folding rely greatly on the unfolded protein response (UPR), an array of three main signaling pathways designed to maintain ER homeostasis and limit ER stress. However, prolonged or excessive UPR activation triggers alternative molecular pathways that can lead to ß-cell dysfunction and apoptosis. An increasing number of studies suggest a role of these pro-apoptotic UPR pathways in the downfall of ß-cells observed in diabetic patients. Particularly, the past few years highlighted a cross talk between the UPR and inflammation in the context of both type 1 (T1D) and type 2 diabetes (T2D). In this article, we describe the recent advances in research regarding the interplay between ER stress, the UPR, and inflammation in the context of ß-cell apoptosis leading to diabetes.


Asunto(s)
Estrés del Retículo Endoplásmico , Inflamación/metabolismo , Islotes Pancreáticos/metabolismo , Respuesta de Proteína Desplegada , Animales , Citocinas/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Susceptibilidad a Enfermedades , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Inflamasomas/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/patología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Chaperonas Moleculares/metabolismo , Terapia Molecular Dirigida , FN-kappa B/metabolismo , Transducción de Señal , Respuesta de Proteína Desplegada/efectos de los fármacos
13.
Diabetologia ; 59(3): 512-21, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26634571

RESUMEN

AIMS/HYPOTHESIS: Activation of the transcription factor nuclear factor (NF)-κB by proinflammatory cytokines plays an important role in beta cell demise in type 1 diabetes. Two main signalling pathways are known to activate NF-κB, namely the canonical and the non-canonical pathways. Up to now, studies on the role of NF-κB activation in beta cells have focused on the canonical pathway. The aim of this study was to investigate whether cytokines activate the non-canonical pathway in beta cells, how this pathway is regulated and the consequences of its activation on beta cell fate. METHODS: NF-κB signalling was analysed by immunoblotting, promoter reporter assays and real-time RT-PCR, after knockdown or overexpression of key genes/proteins. INS-1E cells, FACS-purified rat beta cells and the human beta cell line EndoC-ßH1 exposed to cytokines were used as models. RESULTS: IL-1ß plus IFN-γ induced stabilisation of NF-κB-inducing kinase and increased the expression and cleavage of p100 protein, culminating in the nuclear translocation of p52, the hallmark of the non-canonical signalling. This activation relied on different crosstalks between the canonical and non-canonical pathways, some of which were beta cell specific. Importantly, cytokine-mediated activation of the non-canonical pathway controlled the expression of 'late' NF-κB-dependent genes, regulating both pro-apoptotic and inflammatory responses, which are implicated in beta cell loss in early type 1 diabetes. CONCLUSIONS/INTERPRETATION: The atypical activation of the non-canonical NF-κB pathway by proinflammatory cytokines constitutes a novel 'feed-forward' mechanism that contributes to the particularly pro-apoptotic effect of NF-κB in beta cells.


Asunto(s)
Citocinas/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , FN-kappa B/metabolismo , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Inmunoprecipitación , Masculino , Óxido Nítrico/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
14.
Mol Endocrinol ; 30(1): 48-61, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26652732

RESUMEN

Activation of the transcription factor nuclear factor kappa B (NFkB) contributes to ß-cell death in type 1 diabetes (T1D). Genome-wide association studies have identified the gene TNF-induced protein 3 (TNFAIP3), encoding for the zinc finger protein A20, as a susceptibility locus for T1D. A20 restricts NF-κB signaling and has strong antiapoptotic activities in ß-cells. Although the role of A20 on NF-κB inhibition is well characterized, its other antiapoptotic functions are largely unknown. By studying INS-1E cells and rat dispersed islet cells knocked down or overexpressing A20 and islets isolated from the ß-cell-specific A20 knockout mice, we presently demonstrate that A20 has broader effects in ß-cells that are not restricted to inhibition of NF-κB. These involves, suppression of the proapoptotic mitogen-activated protein kinase c-Jun N-terminal kinase (JNK), activation of survival signaling via v-akt murine thymoma viral oncogene homolog (Akt) and consequently inhibition of the intrinsic apoptotic pathway. Finally, in a cohort of T1D children, we observed that the risk allele of the rs2327832 single nucleotide polymorphism of TNFAIP3 predicted lower C-peptide and higher hemoglobin A1c (HbA1c) levels 12 months after disease onset, indicating reduced residual ß-cell function and impaired glycemic control. In conclusion, our results indicate a critical role for A20 in the regulation of ß-cell survival and unveil novel mechanisms by which A20 controls ß-cell fate. Moreover, we identify the single nucleotide polymorphism rs2327832 of TNFAIP3 as a possible prognostic marker for diabetes outcome in children with T1D.


Asunto(s)
Apoptosis/fisiología , Cisteína Endopeptidasas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Niño , Cisteína Endopeptidasas/genética , Diabetes Mellitus Tipo 1/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Células Secretoras de Insulina/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Polimorfismo de Nucleótido Simple , Ratas , Transducción de Señal/fisiología , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa
15.
Diabetologia ; 58(12): 2843-50, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26362865

RESUMEN

AIMS/HYPOTHESIS: Calcium plays an important role in the process of glucose-induced insulin release in pancreatic beta cells. These cells are equipped with a double system responsible for Ca(2+) extrusion--the Na/Ca exchanger (NCX) and the plasma membrane Ca(2+)-ATPase (PMCA). We have shown that heterozygous inactivation of NCX1 in mice increased glucose-induced insulin release and stimulated beta cell proliferation and mass. In the present study, we examined the effects of heterozygous inactivation of the PMCA on beta cell function. METHODS: Biological and morphological methods (Ca(2+) imaging, Ca(2+) uptake, glucose metabolism, insulin release and immunohistochemistry) were used to assess beta cell function and proliferation in Pmca2 (also known as Atp2b2) heterozygous mice and control littermates ex vivo. Blood glucose and insulin levels were also measured to assess glucose metabolism in vivo. RESULTS: Pmca (isoform 2) heterozygous inactivation increased intracellular Ca(2+) stores and glucose-induced insulin release. Moreover, increased beta cell proliferation, mass, viability and islet size were observed in Pmca2 heterozygous mice. However, no differences in beta cell glucose metabolism, proinsulin immunostaining and insulin content were observed. CONCLUSIONS/INTERPRETATION: The present data indicates that inhibition of Ca(2+) extrusion from the beta cell and its subsequent intracellular accumulation stimulates beta cell function, proliferation and mass. This is in agreement with our previous results observed in mice displaying heterozygous inactivation of NCX, and indicates that inhibition of Ca(2+) extrusion mechanisms by small molecules in beta cells may represent a new approach in the treatment of type 1 and type 2 diabetes.


Asunto(s)
Membrana Celular/enzimología , Glucosa/farmacología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Intercambiador de Sodio-Calcio/genética
16.
PLoS Pathog ; 7(9): e1002267, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21977009

RESUMEN

The rise in type 1 diabetes (T1D) incidence in recent decades is probably related to modifications in environmental factors. Viruses are among the putative environmental triggers of T1D. The mechanisms regulating beta cell responses to viruses, however, remain to be defined. We have presently clarified the signaling pathways leading to beta cell apoptosis following exposure to the viral mimetic double-stranded RNA (dsRNA) and a diabetogenic enterovirus (Coxsackievirus B5). Internal dsRNA induces cell death via the intrinsic mitochondrial pathway. In this process, activation of the dsRNA-dependent protein kinase (PKR) promotes eIF2α phosphorylation and protein synthesis inhibition, leading to downregulation of the antiapoptotic Bcl-2 protein myeloid cell leukemia sequence 1 (Mcl-1). Mcl-1 decrease results in the release of the BH3-only protein Bim, which activates the mitochondrial pathway of apoptosis. Indeed, Bim knockdown prevented both dsRNA- and Coxsackievirus B5-induced beta cell death, and counteracted the proapoptotic effects of Mcl-1 silencing. These observations indicate that the balance between Mcl-1 and Bim is a key factor regulating beta cell survival during diabetogenic viral infections.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Infecciones por Coxsackievirus/metabolismo , Enterovirus Humano B/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Animales , Proteína 11 Similar a Bcl2 , Línea Celular , Supervivencia Celular , Infecciones por Coxsackievirus/patología , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/virología , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/virología , Masculino , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Fosforilación , Ratas , Ratas Wistar
17.
Diabetes ; 60(8): 2076-85, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21659499

RESUMEN

OBJECTIVE: We have previously shown that overexpression of the Na-Ca exchanger (NCX1), a protein responsible for Ca(2+) extrusion from cells, increases ß-cell programmed cell death (apoptosis) and reduces ß-cell proliferation. To further characterize the role of NCX1 in ß-cells under in vivo conditions, we developed and characterized mice deficient for NCX1. RESEARCH DESIGN AND METHODS: Biologic and morphologic methods (Ca(2+) imaging, Ca(2+) uptake, glucose metabolism, insulin release, and point counting morphometry) were used to assess ß-cell function in vitro. Blood glucose and insulin levels were measured to assess glucose metabolism and insulin sensitivity in vivo. Islets were transplanted under the kidney capsule to assess their performance to revert diabetes in alloxan-diabetic mice. RESULTS: Heterozygous inactivation of Ncx1 in mice induced an increase in glucose-induced insulin release, with a major enhancement of its first and second phase. This was paralleled by an increase in ß-cell proliferation and mass. The mutation also increased ß-cell insulin content, proinsulin immunostaining, glucose-induced Ca(2+) uptake, and ß-cell resistance to hypoxia. In addition, Ncx1(+/-) islets showed a two- to four-times higher rate of diabetes cure than Ncx1(+/+) islets when transplanted into diabetic animals. CONCLUSIONS: Downregulation of the Na/Ca exchanger leads to an increase in ß-cell function, proliferation, mass, and resistance to physiologic stress, namely to various changes in ß-cell function that are opposite to the major abnormalities seen in type 2 diabetes. This provides a unique model for the prevention and treatment of ß-cell dysfunction in type 2 diabetes and after islet transplantation.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Intercambiador de Sodio-Calcio/genética , Animales , Glucemia/metabolismo , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Femenino , Glucosa/farmacología , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Trasplante de Islotes Pancreáticos , Masculino , Ratones , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/metabolismo
18.
J Proteome Res ; 9(10): 5142-52, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20839851

RESUMEN

Exposure of insulin-secreting ß-cells to inflammatory cytokines or high concentrations of free fatty acids, factors involved in the pathogenesis of type 1 and type 2 diabetes, leads to endoplasmic reticulum (ER) stress, ß-cell dysfunction, and eventually apoptotic ß-cell death. The aim of this study was to investigate the impact of ER stress on ß-cells at the protein level to evaluate the contribution of post-transcriptional and post-translational changes in ER stress-induced ß-cell damage. INS-1E cells were exposed in vitro to the ER-stress inducer cyclopiazonic acid (CPA) at two concentrations, and protein changes were evaluated using 2D-DIGE. CPA, 25 µM, led to massive apoptosis, accompanied by a near complete protein translation shut-down. CPA, 6.25 µM, led to adaptation of the ß-cells to ER stress. Identification of the differentially expressed proteins in the two conditions led to the discovery of a clear pattern of defense pathways, with post-translational modifications playing a crucial role. Key alterations included inhibition of insulin translation and post-translational modifications in ER chaperones HYOU1 and HSPA5. Also, a central role for 14-3-3 proteins is suggested. In conclusion, INS-1E cells are highly sensitive to ER stress, leading to important post-transcriptional and post-translational modifications that may contribute to ß-cell dysfunction and death.


Asunto(s)
Retículo Endoplásmico/metabolismo , Células Secretoras de Insulina/metabolismo , Proteoma/análisis , Proteómica/métodos , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Electroforesis en Gel Bidimensional , Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Expresión Génica/efectos de los fármacos , Indoles/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Insulinoma/metabolismo , Insulinoma/patología , Unión Proteica/efectos de los fármacos , Proteoma/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
J Biol Chem ; 285(40): 30634-43, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20660595

RESUMEN

Ca(2+) may trigger apoptosis in ß-cells. Hence, the control of intracellular Ca(2+) may represent a potential approach to prevent ß-cell apoptosis in diabetes. Our objective was to investigate the effect and mechanism of action of plasma membrane Ca(2+)-ATPase (PMCA) overexpression on Ca(2+)-regulated apoptosis in clonal ß-cells. Clonal ß-cells (BRIN-BD11) were examined for the effect of PMCA overexpression on cytosolic and mitochondrial [Ca(2+)] using a combination of aequorins with different Ca(2+) affinities and on the ER and mitochondrial pathways of apoptosis. ß-cell stimulation generated microdomains of high [Ca(2+)] in the cytosol and subcellular heterogeneities in [Ca(2+)] among mitochondria. Overexpression of PMCA decreased [Ca(2+)] in the cytosol, the ER, and the mitochondria and activated the IRE1α-XBP1s but inhibited the PRKR-like ER kinase-eIF2α and the ATF6-BiP pathways of the ER-unfolded protein response. Increased Bax/Bcl-2 expression ratio was observed in PMCA overexpressing ß-cells. This was followed by Bax translocation to the mitochondria with subsequent cytochrome c release, opening of the permeability transition pore, and apoptosis. In conclusion, clonal ß-cell stimulation generates microdomains of high [Ca(2+)] in the cytosol and subcellular heterogeneities in [Ca(2+)] among mitochondria. PMCA overexpression depletes intracellular [Ca(2+)] stores and, despite a decrease in mitochondrial [Ca(2+)], induces apoptosis through the mitochondrial pathway. These data open the way to new strategies to control cellular Ca(2+) homeostasis that could decrease ß-cell apoptosis in diabetes.


Asunto(s)
Apoptosis , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Células Secretoras de Insulina/enzimología , Mitocondrias/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/biosíntesis , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Aequorina/genética , Aequorina/metabolismo , Animales , Línea Celular , Citocromos c/genética , Citocromos c/metabolismo , Diabetes Mellitus/enzimología , Diabetes Mellitus/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Permeabilidad , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Ratas , Respuesta de Proteína Desplegada/genética , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
20.
Endocrinology ; 150(9): 4094-103, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19556421

RESUMEN

Accumulating evidence suggests that endoplasmic reticulum (ER) stress by mechanisms that include ER Ca(2+) depletion via NO-dependent down-regulation of sarcoendoplasmic reticulum Ca(2+) ATPase 2b (SERCA2b) contributes to beta-cell death in type 1 diabetes. To clarify whether the molecular pathways elicited by NO and ER Ca(2+) depletion differ, we here compare the direct effects of NO, in the form of the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP), with the effects of SERCA2 inhibitor thapsigargin (TG) on MAPK, nuclear factor kappaB (NFkappaB), Bcl-2 proteins, ER stress, and apoptosis. Exposure of INS-1E cells to TG or SNAP caused caspase-3 cleavage and apoptosis. Both TG and SNAP induced activation of the proapoptotic transcription factor CCAAT/enhancer-binding protein homologous protein (CHOP). However, other classical ER stress-induced markers such as up-regulation of ER chaperone Bip and alternative splicing of the transcription factor Xbp-1 were exclusively activated by TG. TG exposure caused NFkappaB activation, as assessed by IkappaB degradation and NFkappaB DNA binding. Inhibition of NFkappaB or the Bcl-2 family member Bax pathways protected beta-cells against TG- but not SNAP-induced beta-cell death. These data suggest that NO generation and direct SERCA2 inhibition cause two quantitative and qualitative different forms of ER stress. In contrast to NO, direct ER stress induced by SERCA inhibition causes activation of ER stress signaling pathways and elicit proapoptotic signaling via NFkappaB and Bax.


Asunto(s)
Apoptosis/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Óxido Nítrico/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteína X Asociada a bcl-2/antagonistas & inhibidores , Animales , Caspasa 9/metabolismo , Línea Celular Tumoral , Insulinoma/patología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Ratas , S-Nitroso-N-Acetilpenicilamina/farmacología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Tapsigargina/farmacología , Factor de Transcripción CHOP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...