Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(14): 3757-3763, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38551487

RESUMEN

Herein, we predict the first set of covalently bonded triatomic molecular compounds composed exclusively of noble gases. Using a combination of double-hybrid DFT, CCSD(T), and MRCI+Q calculations and a range of bonding analyses, we explored a set of 270 doubly charged triatomics, which included various combinations of noble gases and main group elements. This extensive exploration uncovered nine noble-gas-exclusive covalent compounds incorporating helium, neon, argon, or combinations thereof, exemplified by cases such as He32+ and related systems. This work brings to light a previously uncharted domain of noble gas chemistry, demonstrating the potential of noble gases in forming covalent molecular clusters.

2.
J Am Chem Soc ; 144(51): 23492-23504, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36534052

RESUMEN

Singlet fission in covalently bound acene dimers in solution is driven by the interplay of excitonic and singlet correlated triplet 1(TT) states with intermediate charge-transfer states, a process which depends sensitively on the solvent environment. We use high-level electronic structure methods to explore this singlet fission process in a linked tetracene dimer, with emphasis on the symmetry-breaking mechanism for the charge-transfer (CT) states induced by low-frequency antisymmetric vibrations and polar/polarizable solvents. A combination of the second-order algebraic diagrammatic construction (ADC(2)) and density functional theory/multireference configuration interaction (DFT/MRCI) methods are employed, along with a state-specific conductor-like screening model (COSMO) solvation model in the former case. This work quantifies, for the first time, an earlier mechanistic proposal [Alvertis et al., J. Am. Chem. Soc. 2019, 141, 17558] according to which solvent-induced symmetry breaking leads to a high-energy CT state which interacts with the correlated triplet state, resulting in singlet fission. An approximate assessment of the nonadiabatic interactions between the different electronic states underscores that the CT states are essential in facilitating the transition from the bright excitonic state to the 1(TT) state leading to singlet fission. We show that several types of symmetry-breaking inter- and intra-fragment vibrations play a crucial role in a concerted mechanism with the solvent environment and with the symmetric inter-fragment torsion, which tunes the admixture of excitonic and CT states. This offers a new perspective on how solvent-induced symmetry-breaking CT can be understood and how it cooperates with intramolecular mechanisms in singlet fission.

3.
J Phys Chem A ; 126(16): 2522-2531, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35348324

RESUMEN

We demonstrate that ß-oxo-substitution provides effective fine-tuning of both steady-state and transient electronic properties of octaalkyl-ß-mono-oxochlorin and all isomers of the ß,ß'-dioxo-substituted chromophores. The addition of a carbonyl group increases the Qy oscillator strength and red-shifts the absorption spectra. Each oxo-substitution results in a 2-fold increase in the singlet to triplet state intersystem crossing (ISC) rates, resulting in a 4-fold ISC rate increase for the dioxo-substituted chromophores. The effects of oxo-substitution on the ISC rate are thus additive. The progressive increase in the ISC rates correlates directly with the spin-vibronic channels provided by the C═O out-of-plane distortion modes, as evidenced by density functional theory (DFT) modeling. The triplet states, however, were not evenly affected by ß-oxo-substitution, and reduction in the triplet lifetime seems to be influenced instead by the presence of NH tautomers in the dioxoisobacteriochlorins.

4.
Chemistry ; 27(47): 12126-12136, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34114702

RESUMEN

The development of complexes featuring low-valent, multiply bonded metal centers is an exciting field with several potential applications. In this work, we describe the design principles and extensive computational investigation of new organometallic platforms featuring the elusive manganese-manganese bond stabilized by experimentally realized N-heterocyclic carbenes (NHCs). By using DFT computations benchmarked against multireference calculations, as well as MO- and VB-based bonding analyses, we could disentangle the various electronic and structural effects contributing to the thermodynamic and kinetic stability, as well as the experimental feasibility, of the systems. In particular, we explored the nature of the metal-carbene interaction and the role of the ancillary η6 coordination to the generation of Mn2 systems featuring ultrashort metal-metal bonds, closed-shell singlet multiplicities, and positive adiabatic singlet-triplet gaps. Our analysis identifies two distinct classes of viable synthetic targets, whose electrostructural properties are thoroughly investigated.

5.
Int J Mass Spectrom ; 4612021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33424422

RESUMEN

The accurate determination of the nonpolar surface area of glycans is vital when utilizing liquid chromatograph/mass spectrometry (LC-MS) for structural characterization. A new approach for defining and computing nonpolar surface areas based on continuum solvation models (CS-NPSA) is presented. It is based on the classification of individual surface elements representing the solvent accessible surface used for the description of the polarized charge density elements in the CS models. Each element can be classified as polar or nonpolar according to a threshold value. The summation of the nonpolar elements then results in the NPSA resulting in a very fine resolution of this surface. The further advantage of the CS-NPSA approach is the straightforward connection to standard quantum chemical methods and program packages. The method has been analyzed in terms of the contributions of different atoms to the NPSA. The analysis showed that not only atoms normally classified as nonpolar contributed to the NPSA, but at least partially also atoms next to polar atoms or N atoms. By virtue of the construction of the solvent accessible surface, atoms in the inner regions of a molecule can be automatically identified as not contributing to the NPSA. The method has been applied to a variety of examples such as the phenylbutanehydrazide series, model dextrans consisting of glucose units and biantennary glycans. Linear correlation of the CS-NPSA values with retention times obtained from liquid chromatographic separations measurements in the mentioned cases give excellent results and promise for more extended applications on a larger variety of compounds.

6.
J Chem Phys ; 154(4): 044306, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33514084

RESUMEN

Extended quantum chemical calculations were performed for the tetracene dimer to provide benchmark results, analyze the excimer survival process, and explore the possibility of using long-range-corrected (LC) time-dependent second-order density functional tight-biding (DFTB2) for this system. Ground- and first-excited-state optimized geometries, vertical excitations at relevant minima, and intermonomer displacement potential energy curves (PECs) were calculated for these purposes. Ground-state geometries were optimized with the scaled-opposite-spin (SOS) second-order Møller-Plesset perturbation (MP2) theory and LC-DFT (density functional theory) and LC-DFTB2 levels. Excited-state geometries were optimized with SOS-ADC(2) (algebraic diagrammatic construction to second-order) and the time-dependent approaches for the latter two methods. Vertical excitations and PECs were compared to multireference configuration interaction DFT (DFT/MRCI). All methods predict the lowest-energy S0 conformer to have monomers parallel and rotated relative to each other and the lowest S1 conformer to be of a displaced-stacked type. LC-DFTB2, however, presents some relevant differences regarding other conformers for S0. Despite some state-order inversions, overall good agreement between methods was observed in the spectral shape, state character, and PECs. Nevertheless, DFT/MRCI predicts that the S1 state should acquire a doubly excited-state character relevant to the excimer survival process and, therefore, cannot be completely described by the single reference methods used in this work. PECs also revealed an interesting relation between dissociation energies and the intermonomer charge-transfer interactions for some states.

7.
Phys Chem Chem Phys ; 20(34): 21988-21998, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30109317

RESUMEN

The kinetics of trichloroacetic acid (TCA) decarboxylation strongly depends on the solvent in which it occurs, proceeding faster in polar aprotic solvents compared to protic solvents. In particular, the reaction is known to be fast in DMSO even at room temperature and is rather slow in water even at higher temperatures. In order to understand the role of the solvent in the kinetics of TCA decarboxylation, the present study investigates this reaction using both ab initio molecular dynamics (AIMD) simulations in explicit solvents and static electronic structure calculations with the SMD polarizable continuum model, considering DMSO and water as solvents. Both methodologies yield activation free energies in good agreement with experimental data, however they differ with respect to the reaction profile for the process occurring in water. The simulations suggest that DMSO does not participate chemically in the reaction and that the high reaction rate in DMSO can be explained by differential solvation of the reactant and transition state. In water, a protonation step was observed along the simulation trajectory, indicating chemical participation of the solvent in this case. Moreover, the continuum model has shown to be useful to predict the reaction rates in other solvents, suggesting that reaction rates increase upon decreasing solvent polarity up to the point where the apolar solvents are not able to efficiently screen the strong electrostatic interactions to form the required isolated ionic species.

8.
Phys Chem Chem Phys ; 19(29): 19352-19359, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28703821

RESUMEN

Generalized valence bond (GVB) and spin-coupled (SC) calculations were used in conjunction with the generalized product function energy partitioning (GPF-EP) method to describe the origin of metastability in doubly charged homonuclear dications. A model to describe the formation of metastable potential wells based on interference and quasi-classical effects is presented. The GPF-EP picture of dications is the result of polarization-aided strong covalent bonding surpassing Coulomb electrostatic repulsion. Important differences in the quasi-classical density profiles of He22+ and Ne22+ reveal the underlying mechanism that could lead to bound or unbound states. Finally, the nature of the chemical bond of N22+, O22+, and F22+ is described. The results suggest that the ground states of the mentioned dications are bounded and that the depth of the potential wells of these exotic species is related to the interference effect, in the same way as in previously studied neutral molecules.

9.
Chemphyschem ; 17(2): 288-95, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26584147

RESUMEN

The generalized product function energy partitioning (GPF-EP) method is applied to the description of the cyclobutadiene molecule. The GPF wave function was built to reproduce generalized valence bond (GVB) and spin-coupled (SC) wave functions. The influence of quasiclassical and quantum interference contributions to each chemical bond of the system are analyzed along the automerization reaction coordinate for the lowest singlet and triplet states. The results show that the interference effect on the π space reduces the electronic energy of the singlet cyclobutadiene relative to the second-order Jahn-Teller distortion, which takes the molecule from a D4h to a D2h structure. Our results also suggest that the π space of the (1) B1g state of the square cyclobutadiene is composed of a weak four center-four electron bond, whereas the (3) A2g state has a four center-two electron π bond. Finally, we also show that, although strain effects are nonnegligible, the thermodynamics of the main decomposition pathway of cyclobutadiene in the gas phase is dominated by the π space interference.

10.
J Phys Chem A ; 119(9): 1787-95, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25415930

RESUMEN

The absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers with up to seven repeat units were theoretically investigated using the algebraic diagrammatic construction method to second order, ADC(2), combined with the resolution-of-the-identity (RI) approach. The ground and first excited state geometries of the oligomers were fully optimized. Vertical excitation energies and oscillator strengths of the first four transitions were computed. The vibrational broadening of the absorption and fluorescence spectra was studied using a semiclassical nuclear ensemble method. After correcting for basis set and solvent effects, we achieved a balanced description of the absorption and fluorescence spectra by means of the ADC(2) approach. This fact is documented by the computed Stokes shift along the PPV series, which is in good agreement with the experimental values. The experimentally observed band width of the UV absorption and fluorescence spectra is well reproduced by the present simulations showing that the nuclear ensemble generated should be well suitable for consecutive surface hopping dynamics simulations.

11.
Org Biomol Chem ; 11(2): 299-308, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23172415

RESUMEN

The origin of the anomeric effect has remained an open question. After Mo demonstrated that hyperconjugation is not responsible for the anomeric effect [Y. Mo, Nature Chem., 2010, 2, 666.], electrostatic interactions and Pauli repulsions have been at the center of this debate. In this work, the total energies of the most stable rotamers of the equatorial and axial anomers of fluoro, hydroxyl, cyano and amino groups in cyclohexane and 2-substituted tetrahydropyran rings are decomposed into their fundamental kinetic, electrostatic and exchange components. In this partitioning scheme, the differences in the total energies among the most stable rotamers of each anomer correlate very well with the differences in the exchange components, revealing that the anomeric effect has no electrostatic origin. Indeed, the anomeric effect is dominated by the exchange energy. This proposal for the origin of the anomeric effect brings new insights that, once incorporated, may improve qualitative chemical models. Implications of this new proposal for the origin of the anomeric effect on geometric parameters and solvation are also discussed.


Asunto(s)
Ciclohexanos/química , Piranos/química , Electrones , Isomerismo , Conformación Molecular , Soluciones , Solventes/química , Electricidad Estática , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...