Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 861: 160455, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36435237

RESUMEN

Soil and bedrock weathering and phosphate (P) fertilizers may both contribute to the uranium (U) load of rivers in agricultural regions, but controls over their relative influence are not well known. This study investigates the U sources to rivers in Ohio, United States, part of the Eastern Corn Belt in the Mississippi River watershed. We present a regional picture of seasonal U sources to rivers based on four analyses: 1) a spatial analysis of legacy soil and water data, 2) new measurements of U and carbonate weathering products from rivers at 50 locations across the state collected seasonally over two years, 3) a weekly time series with additional 234U/238U (n = 5) and 87Sr/86Sr (n = 5) measurements from an agricultural river, and 4) a mass-balance approach to U addition to the landscape based on reported P fertilizer use. Uranium concentrations in surface waters collected statewide ranged 0.1-21 nM (n = 132), with significantly higher concentrations in the glaciated agricultural portion of the state (mean = 7.3 nM; n = 105) than the non-glaciated portion (mean = 2.0 nM; n = 24). Concentrations in the glaciated region were highest during the spring and summer and decreased during baseflow. In the time-series, concentrations were ~7 nM during baseflow and ~14 nM during intermediate seasonal discharge conditions, indicating a second more surficial endmember source of U in addition to bedrock weathering that is well correlated with other carbonate weathering products. Systematic increases in 87Sr/86Sr and decreases in 234U/238U with increasing discharge confirm a changing source of carbonate and U weathering and a third surficial endmember during high discharge events. Our mass balance approach and geochemical analysis suggest that elevated U concentrations are the result of carbonate weathering deep in the soil column during elevated seasonal flow. Further work on U dynamics in agricultural rivers is required to understand mechanism controlling seasonal changes in U concentrations and 234U/238U in downstream rivers and U flux.


Asunto(s)
Fertilizantes , Uranio , Fertilizantes/análisis , Estaciones del Año , Uranio/análisis , Zea mays , Fosfatos/análisis , Carbonatos/análisis , Suelo , Monitoreo del Ambiente
2.
Environ Sci Technol ; 38(20): 5319-26, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15543732

RESUMEN

Trace metal clean techniques were used to sample and analyze the input of dissolved trace metals, major ions, and dissolved organic carbon (DOC) from a storm sewer along an urban highway in Columbus, OH. The outfall, draining a 3.6 ha sewershed with 100% impermeable surface area, discharges into the Olentangy River. Dissolved Pb (average concentration of 3 nM) and dissolved Zn (average concentration of 127 nM) were found to be much lower in concentration than reported in previous investigations of dissolved metals in urban stormwater runoff. Average concentrations of dissolved Cr (1 microM), Ni (0.087 microM), and Cu (0.33 microM) were similar to those reported in previous studies. The storm sewer is shown to be a significant source of V, Ni, and Zn to the river. The outfall is also a significant source of Na, NH4, Cl, and DOC. The storm sewer input is depleted in NO2 and NO3 as compared to the river, reflecting the highly agricultural land use of the watershed upstream of the sewershed. Input from the storm sewer is also depleted, as compared to the river, with respect to dissolved Mg, Sr, and U with probable sources in the limestone/shale bedrock and glacial till-derived soils in the watershed.


Asunto(s)
Metales/análisis , Ríos , Aguas del Alcantarillado/análisis , Contaminantes Químicos del Agua/análisis , Ciudades , Monitoreo del Ambiente , Vehículos a Motor , Nitratos/análisis , Nitritos/análisis , Nitrógeno/análisis , Ohio , Compuestos de Amonio Cuaternario/análisis , Ríos/química , Movimientos del Agua
3.
Ground Water ; 42(3): 401-17, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15161157

RESUMEN

Ground water samples (37 to 186 m depth) from Baldwin County, Alabama, are used to define the hydrogeology of Gulf coastal aquifers and calculate the subsurface discharge of nutrients to the Gulf of Mexico. The ground water flow and nitrate flux have been determined by linking ground water concentrations to 3H/3He and 4He age dates. The middle aquifer (A2) is an active flow system characterized by postnuclear tritium levels, moderate vertical velocities, and high nitrate concentrations. Ground water discharge could be an unaccounted source for nutrients in the coastal oceans. The aquifers annually discharge 1.1 +/- 0.01 x 10(8) moles of nitrate to the Gulf of Mexico, or 50% and 0.8% of the annual contributions from the Mobile-Alabama River System and the Mississippi River System, respectively. In southern Baldwin County, south of Loxley, increasing reliance on ground water in the deeper A3 aquifer requires accurate estimates of safe ground water withdrawal. This aquifer, partially confined by Pliocene clay above and Pensacola Clay below, is tritium dead and contains elevated 4He concentrations with no nitrate and estimated ground water ages from 100 to 7000 years. The isotopic composition and concentration of natural gas diffusing from the Pensacola Clay into the A3 aquifer aids in defining the deep ground water discharge. The highest 4He and CH4 concentrations are found only in the deepest sample (Gulf State Park), indicating that ground water flow into the Gulf of Mexico suppresses the natural gas plume. Using the shape of the CH4-He plume and the accumulation of 4He rate (2.2 +/- 0.8 microcc/kg/1000 years), we estimate the natural submarine discharge and the replenishment rate for the A3 aquifer.


Asunto(s)
Nitratos/análisis , Movimientos del Agua , Abastecimiento de Agua , Alabama , Monitoreo del Ambiente , Helio/análisis , Hidrógeno/análisis , Metano/análisis , Agua de Mar , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...