Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Orthop Trauma Surg ; 144(5): 1989-1996, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554205

RESUMEN

BACKGROUND: The use of 3D planning to guide corrective osteotomies of the lower extremity is increasing in clinical practice. The use of computer-tomography (CT) data acquired in supine position neglects the weight-bearing (WB) state and the gold standard in 3D planning involves the manual adaption of the surgical plan after considering the WB state in long-leg radiographs (LLR). However, this process is subjective and dependent on the surgeons experience. A more standardized and automated method could reduce variability and decrease costs. PURPOSE: The aim of the study was (1) to compare three different three-dimensional (3D) planning modalities for medial open-wedge high tibial osteotomy (MOWHTO) and (2) to describe the current practice of adapting NWB CT data after considering the WB state in LLR. The purpose of this study is to validate a new, standardized approach to include the WB state into the 3D planning and to compare this method against the current gold standard of 3D planning. Our hypothesis is that the correction is comparable to the gold standard, but shows less variability due compared to the more subjective hybrid approach. METHODS: Three surgical planning modalities were retrospectively analyzed in 43 legs scheduled for MOWHTO between 2015 and 2019. The planning modalities included: (1) 3D hybrid (3D non-weight-bearing (NWB) CT models after manual adaption of the opening angle considering the WB state in LLR, (2) 3D NWB (3D NWB CT models) and (3) 3D WB (2D/3D registration of 3D NWB CT models onto LLR to simulate the WB state). The pre- and postoperative hip-knee-ankle angle (HKA) and the planned opening angle (°) were assessed and differences among modalities reported. The relationship between the reported differences and BMI, preoperative HKA (LLR), medial meniscus extrusion, Outerbridge osteoarthritis grade and joint line convergence angle (JLCA) was analyzed. RESULTS: The mean (std) planned opening angle of 3D hybrid did not differ between 3D hybrid and 3D WB (0.4 ± 2.1°) (n.s.) but was higher in 3D hybrid compared to 3D NWB (1.1° ± 1.1°) (p = 0.039). 3D WB demonstrated increased preoperative varus deformity compared to 3D NWB: 6.7 ± 3.8° vs. 5.6 ± 2.7° (p = 0.029). Patients with an increased varus deformity in 3D WB compared to 3D NWB (> 2 °) demonstrated more extensive varus alignment in LLR (p = 0.009) and a higher JLCA (p = 0.013). CONCLUSION: Small intermodal differences between the current practice of the reported 3D hybrid planning modality and a 3D WB approach using a 2D/3D registration algorithm were reported. In contrast, neglecting the WB state underestimates preoperative varus deformity and results in a smaller planned opening angle. This leads to potential under correction in MOWHTO, especially in patients with extensive varus deformities or JLCA. CLINICAL RELEVANCE: Incorporating the WB state in 3D planning modalities has the potential to increase accuracy and lead to a more consistent and reliable planning in MOWHTO. The inclusion of the WB state in automatized surgical planning algorithms has the potential to reduce costs and time in the future.


Asunto(s)
Imagenología Tridimensional , Osteotomía , Tomografía Computarizada por Rayos X , Soporte de Peso , Humanos , Soporte de Peso/fisiología , Imagenología Tridimensional/métodos , Tomografía Computarizada por Rayos X/métodos , Estudios Retrospectivos , Persona de Mediana Edad , Masculino , Osteotomía/métodos , Femenino , Adulto , Tibia/cirugía , Tibia/diagnóstico por imagen , Extremidad Inferior/cirugía , Extremidad Inferior/diagnóstico por imagen , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...