Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38496458

RESUMEN

Zipper-interacting protein kinase (ZIPK) is a Ser/Thr protein kinase with regulatory involvement in vascular smooth muscle cell (VSMC) actin polymerization and focal adhesion assembly dynamics. ZIPK silencing can induce cytoskeletal remodeling with disassembly of actin stress fiber networks and coincident loss of focal adhesion kinase (FAK)-pY397 phosphorylation. The link between ZIPK inhibition and FAK phosphorylation is unknown, and critical interactor(s) and regulator(s) are not yet defined. In this study, we further analyzed the ZIPK-FAK relationship in VSMCs. The application of HS38, a selective ZIPK inhibitor, to coronary artery vascular smooth muscle cells (CASMCs) suppressed cell migration, myosin light chain phosphorylation (pT18&pS19) and FAK-pY397 phosphorylation as well. This was associated with the translocation of cytoplasmic FAK to the nucleus. ZIPK inhibition with HS38 was consistently found to suppress the activation of FAK and attenuate the phosphorylation of other focal adhesion protein components (i.e., pCas130, paxillin, ERK). In addition, our study showed a decrease in human cell-division cycle 14A phosphatase (CDC14A) levels with ZIPK-siRNA treatment and increased CDC14A with transient transfection of ZIPK. Proximity ligation assays (PLA) revealed CDC14A localized with ZIPK and FAK. Silencing CDC14A showed an increase of FAK-pY397 phosphorylation. Ultimately, the data presented herein strongly support a regulatory mechanism of FAK in CASMCs by a ZIPK-CDC14A partnership; ZIPK may act as a key signal integrator to control CDC14A and FAK during VSMC migration.

2.
Exp Physiol ; 108(7): 986-997, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084168

RESUMEN

NEW FINDINGS: What is the central question of this study? DAPK3 contributes to the Ca2+ -sensitization of vascular smooth muscle contraction: does this protein kinase participate in the myogenic response of cerebral arteries? What is the main finding and its importance? Small molecule inhibitors of DAPK3 effectively block the myogenic responses of cerebral arteries. HS38-dependent changes to vessel constriction occur independent of LC20 phosphorylation, and therefore DAPK3 appears to operate via the actin cytoskeleton. A role for DAPK3 in the myogenic response was not previously reported, and the results support a potential new therapeutic target in the cerebrovascular system. ABSTRACT: The vascular smooth muscle (VSM) of resistance blood vessels is a target of intrinsic autoregulatory responses to increased intraluminal pressure, the myogenic response. In the brain, the myogenic reactivity of cerebral arteries is critical to homeostatic blood flow regulation. Here we provide the first evidence to link the death-associated protein kinase 3 (DAPK3) to the myogenic response of rat and human cerebral arteries. DAPK3 is a Ser/Thr kinase involved in Ca2+ -sensitization mechanisms of smooth muscle contraction. Ex vivo administration of a specific DAPK3 inhibitor (i.e., HS38) could attenuate vessel constrictions invoked by serotonin as well as intraluminal pressure elevation. The HS38-dependent dilatation was not associated with any change in myosin light chain (LC20) phosphorylation. The results suggest that DAPK3 does not regulate Ca2+ sensitization pathways during the myogenic response of cerebral vessels but rather operates to control the actin cytoskeleton. A slow return of myogenic tone was observed during the sustained ex vivo exposure of cerebral arteries to HS38. Recovery of tone was associated with greater LC20 phosphorylation that suggests intrinsic signalling compensation in response to attenuation of DAPK3 activity. Additional experiments with VSM cells revealed HS38- and siDAPK-dependent effects on the actin cytoskeleton and focal adhesion kinase phosphorylation status. The translational importance of DAPK3 to the human cerebral vasculature was noted, with robust expression of the protein kinase and significant HS38-dependent attenuation of myogenic reactivity found for human pial vessels.


Asunto(s)
Arterias Cerebrales , Vasoconstricción , Animales , Humanos , Ratas , Arterias Cerebrales/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Proteínas Quinasas , Resistencia Vascular , Vasoconstricción/fisiología
3.
J Biol Chem ; 295(6): 1565-1574, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31914413

RESUMEN

Interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-4, as well as transforming growth factor ß-activated kinase 1 (TAK1), are protein kinases essential for transducing inflammatory signals from interleukin receptors. IRAK family proteins and TAK1 have high sequence identity within the ATP-binding pocket, limiting the development of highly selective IRAK-1/4 or TAK1 inhibitors. Beyond kinase activity, IRAKs and TAK1 act as molecular scaffolds along with other signaling proteins, complicating the interpretation of experiments involving knockin or knockout approaches. In contrast, pharmacological manipulation offers the promise of targeting catalysis-mediated signaling without grossly disrupting the cellular architecture. Recently, we reported the discovery of takinib, a potent and highly selective TAK1 inhibitor that has only marginal activity against IRAK-4. On the basis of the TAK1-takinib complex structure and the structure of IRAK-1/4, here we defined critical contact sites of the takinib scaffold within the nucleotide-binding sites of each respective kinase. Kinase activity testing of takinib analogs against IRAK-4 identified a highly potent IRAK-4 inhibitor (HS-243). In a kinome-wide screen of 468 protein kinases, HS-243 had exquisite selectivity toward both IRAK-1 (IC50 = 24 nm) and IRAK-4 (IC50 = 20 nm), with only minimal TAK1-inhibiting activity (IC50 = 0.5 µm). Using HS-243 and takinib, we evaluated the consequences of cytokine/chemokine responses after selective inhibition of IRAK-1/4 or TAK1 in response to lipopolysaccharide challenge in human rheumatoid arthritis fibroblast-like synoviocytes. Our results indicate that HS-243 specifically inhibits intracellular IRAKs without TAK1 inhibition and that these kinases have distinct, nonredundant signaling roles.


Asunto(s)
Benzamidas/farmacología , Bencimidazoles/farmacología , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/inmunología , Lipopolisacáridos/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Modelos Moleculares , Transducción de Señal/efectos de los fármacos , Sinoviocitos/efectos de los fármacos , Sinoviocitos/inmunología , Células THP-1
4.
Arch Biochem Biophys ; 670: 104-115, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30641048

RESUMEN

The NLRP proteins are a subfamily of the NOD-like receptor (NLR) innate immune sensors that possess an ATP-binding NACHT domain. As the most well studied member, NLRP3 can initiate the assembly process of a multiprotein complex, termed the inflammasome, upon detection of a wide range of microbial products and endogenous danger signals and results in the activation of pro-caspase-1, a cysteine protease that regulates multiple host defense pathways including cytokine maturation. Dysregulated NLRP3 activation contributes to inflammation and the pathogenesis of several chronic diseases, and the ATP-binding properties of NLRPs are thought to be critical for inflammasome activation. In light of this, we examined the utility of immobilized ATP matrices in the study of NLRP inflammasomes. Using NLRP3 as the prototypical member of the family, P-linked ATP Sepharose was determined to be a highly-effective capture agent. In subsequent examinations, P-linked ATP Sepharose was used as an enrichment tool to enable the effective profiling of NLRP3-biomarker signatures with selected reaction monitoring-mass spectrometry (SRM-MS). Finally, ATP Sepharose was used in combination with a fluorescence-linked enzyme chemoproteomic strategy (FLECS) screen to identify potential competitive inhibitors of NLRP3. The identification of a novel benzo[d]imidazol-2-one inhibitor that specifically targets the ATP-binding and hydrolysis properties of the NLRP3 protein implies that ATP Sepharose and FLECS could be applied other NLRPs as well.


Asunto(s)
Adenosina Trifosfato/metabolismo , Inflamasomas/metabolismo , Proteínas NLR/metabolismo , Células HEK293 , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Ubiquitinación
5.
Cell Chem Biol ; 25(10): 1195-1207.e32, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30033129

RESUMEN

Sustained vascular smooth muscle hypercontractility promotes hypertension and cardiovascular disease. The etiology of hypercontractility is not completely understood. New therapeutic targets remain vitally important for drug discovery. Here we report that Pim kinases, in combination with DAPK3, regulate contractility and control hypertension. Using a co-crystal structure of lead molecule (HS38) in complex with DAPK3, a dual Pim/DAPK3 inhibitor (HS56) and selective DAPK3 inhibitors (HS94 and HS148) were developed to provide mechanistic insight into the polypharmacology of hypertension. In vitro and ex vivo studies indicated that Pim kinases directly phosphorylate smooth muscle targets and that Pim/DAPK3 inhibition, unlike selective DAPK3 inhibition, significantly reduces contractility. In vivo, HS56 decreased blood pressure in spontaneously hypertensive mice in a dose-dependent manner without affecting heart rate. These findings suggest including Pim kinase inhibition within a multi-target engagement strategy for hypertension management. HS56 represents a significant step in the development of molecularly targeted antihypertensive medications.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Hipertensión/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Presión Sanguínea/efectos de los fármacos , Cristalografía por Rayos X , Proteínas Quinasas Asociadas a Muerte Celular/química , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Ratones , Modelos Moleculares , Terapia Molecular Dirigida , Contracción Muscular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/química , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Ratas Sprague-Dawley , Alineación de Secuencia
6.
Eur Respir J ; 51(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29386344

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the lung parenchyma, causing significant morbidity through worsening dyspnoea and overall functional decline. IPF is characterised by apoptosis-resistant myofibroblasts, which are a major source for the excessive production of extracellular matrix (ECM) overtaking normal lung tissue. We sought to study the role of heat shock protein (HSP) isoforms HSP90α and HSP90ß, whose distinct roles in lung fibrogenesis remain elusive.We determined the level of circulating HSP90α in IPF patients (n=31) and age-matched healthy controls (n=9) by ELISA. The release of HSP90α and HSP90ß was evaluated in vitro in primary IPF and control lung fibroblasts and ex vivo after mechanical stretch on fibrotic lung slices from rats receiving adenovector-mediated transforming growth factor-ß1.We demonstrate that circulating HSP90α is upregulated in IPF patients in correlation with disease severity. The release of HSP90α is enhanced by the increase in mechanical stress of the fibrotic ECM. This increase in extracellular HSP90α signals through low-density lipoprotein receptor-related protein 1 (LRP1) to promote myofibroblast differentiation and persistence. In parallel, we demonstrate that the intracellular form of HSP90ß stabilises LRP1, thus amplifying HSP90α extracellular action.We believe that the specific inhibition of extracellular HSP90α is a promising therapeutic strategy to reduce pro-fibrotic signalling in IPF.


Asunto(s)
Matriz Extracelular/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Pulmón/patología , Miofibroblastos/metabolismo , Animales , Estudios de Casos y Controles , Células Cultivadas , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Glicoproteínas de Membrana , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Regulación hacia Arriba
7.
Sci Rep ; 7(1): 13772, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29062013

RESUMEN

While the demand for metabolic imaging has increased in recent years, simultaneous in vivo measurement of multiple metabolic endpoints remains challenging. Here we report on a novel technique that provides in vivo high-resolution simultaneous imaging of glucose uptake and mitochondrial metabolism within a dynamic tissue microenvironment. Two indicators were leveraged; 2-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) reports on glucose uptake and Tetramethylrhodamine ethyl ester (TMRE) reports on mitochondrial membrane potential. Although we demonstrated that there was neither optical nor chemical crosstalk between 2-NBDG and TMRE, TMRE uptake was significantly inhibited by simultaneous injection with 2-NBDG in vivo. A staggered delivery scheme of the two agents (TMRE injection was followed by 2-NBDG injection after a 10-minute delay) permitted near-simultaneous in vivo microscopy of 2-NBDG and TMRE at the same tissue site by mitigating the interference of 2-NBDG with normal glucose usage. The staggered delivery strategy was evaluated under both normoxic and hypoxic conditions in normal tissues as well as in a murine breast cancer model. The results were consistent with those expected for independent imaging of 2-NBDG and TMRE. This optical imaging technique allows for monitoring of key metabolic endpoints with the unique benefit of repeated, non-destructive imaging within an intact microenvironment.


Asunto(s)
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Desoxiglucosa/análogos & derivados , Glucosa/metabolismo , Microscopía Intravital/métodos , Neoplasias Mamarias Animales/metabolismo , Potencial de la Membrana Mitocondrial , 4-Cloro-7-nitrobenzofurazano/metabolismo , Animales , Transporte Biológico , Desoxiglucosa/metabolismo , Femenino , Neoplasias Mamarias Animales/patología , Ratones , Ratones Desnudos , Compuestos Organometálicos/química , Fantasmas de Imagen
8.
Cell Chem Biol ; 24(8): 1029-1039.e7, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28820959

RESUMEN

Tumor necrosis factor alpha (TNF-α) has both positive and negative roles in human disease. In certain cancers, TNF-α is infused locally to promote tumor regression, but dose-limiting inflammatory effects limit broader utility. In autoimmune disease, anti-TNF-α antibodies control inflammation in most patients, but these benefits are offset during chronic treatment. TAK1 acts as a key mediator between survival and cell death in TNF-α-mediated signaling. Here, we describe Takinib, a potent and selective TAK1 inhibitor that induces apoptosis following TNF-α stimulation in cell models of rheumatoid arthritis and metastatic breast cancer. We demonstrate that Takinib is an inhibitor of autophosphorylated and non-phosphorylated TAK1 that binds within the ATP-binding pocket and inhibits by slowing down the rate-limiting step of TAK1 activation. Overall, Takinib is an attractive starting point for the development of inhibitors that sensitize cells to TNF-α-induced cell death, with general implications for cancer and autoimmune disease treatment.


Asunto(s)
Benzamidas/química , Bencimidazoles/química , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Factor de Necrosis Tumoral alfa/metabolismo , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Benzamidas/metabolismo , Benzamidas/farmacología , Bencimidazoles/metabolismo , Bencimidazoles/farmacología , Sitios de Unión , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Interleucina-6/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Sinoviocitos/citología , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
9.
Cell Chem Biol ; 23(6): 678-88, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27265747

RESUMEN

Many tumors are dependent on de novo fatty acid synthesis to maintain cell growth. Fatty acid synthase (FASN) catalyzes the final synthetic step of this pathway, and its upregulation is correlated with tumor aggressiveness. The consequences and adaptive responses of acute or chronic inhibition of essential enzymes such as FASN are not fully understood. Herein we identify Fasnall, a thiophenopyrimidine selectively targeting FASN through its co-factor binding sites. Global lipidomics studies with Fasnall showed profound changes in cellular lipid profiles, sharply increasing ceramides, diacylglycerols, and unsaturated fatty acids as well as increasing exogenous palmitate uptake that is deviated more into neutral lipid formation rather than phospholipids. We also showed that the increase in ceramide levels contributes to some extent in the mediation of apoptosis. Consistent with this mechanism of action, Fasnall showed potent anti-tumor activity in the MMTV-Neu model of HER2(+) breast cancer, particularly when combined with carboplatin.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Acido Graso Sintasa Tipo I/antagonistas & inhibidores , Pirimidinas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Tiofenos/farmacología , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Acido Graso Sintasa Tipo I/metabolismo , Femenino , Humanos , Inyecciones Intraperitoneales , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Transgénicos , Pirimidinas/administración & dosificación , Pirimidinas/química , Receptor ErbB-2/metabolismo , Porcinos , Tiofenos/administración & dosificación , Tiofenos/química
10.
Mol Pharmacol ; 89(1): 105-17, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26464323

RESUMEN

A novel inhibitor of zipper-interacting protein kinase (ZIPK) was used to examine the involvement of ZIPK in the regulation of smooth muscle contraction. Pretreatment of de-endothelialized rat caudal arterial smooth muscle strips with the pyrazolo[3,4-d]pyrimidinone inhibitor 2-((1-(3-chlorophenyl)-4-oxo-4,5-dihydro-1H-pyrazolo [3,4-d]-pyrimidin-6-yl)thio)propanamide (HS38) decreased the velocity of contraction (time to reach half-maximal force) induced by the phosphatase inhibitor calyculin A in the presence of Ca(2+) without affecting maximal force development. This effect was reversed following washout of HS38 and correlated with a reduction in the rate of phosphorylation of myosin 20-kDa regulatory light chains (LC20) but not of protein kinase C-potentiated inhibitory protein for myosin phosphatase of 17 kDa (CPI-17), prostate apoptosis response-4, or myosin phosphatase-targeting subunit 1 (MYPT1), all of which have been implicated in the regulation of vascular contractility. A structural analog of HS38, with inhibitory activity toward proviral integrations of Moloney (PIM) virus 3 kinase but not ZIPK, had no effect on calyculin A-induced contraction or protein phosphorylations. We conclude that a pool of constitutively active ZIPK is involved in regulation of vascular smooth muscle contraction through direct phosphorylation of LC20 upon inhibition of myosin light chain phosphatase activity. HS38 also significantly attenuated both phasic and tonic contractile responses elicited by phenylephrine, angiotensin II, endothelin-1, U46619, and K(+)-induced membrane depolarization in the presence of Ca(2+), which correlated with inhibition of phosphorylation of LC20, MYPT1, and CPI-17. These effects of HS38 suggest that ZIPK also lies downstream from G protein-coupled receptors that signal through both Gα12/13 and Gαq/11.


Asunto(s)
Calcio/metabolismo , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Músculo Liso Vascular/enzimología , Pirazoles/farmacología , Pirimidinas/farmacología , Animales , Masculino , Músculo Liso Vascular/efectos de los fármacos , Técnicas de Cultivo de Órganos , Pirazoles/química , Pirimidinas/química , Pirimidinonas/química , Pirimidinonas/farmacología , Ratas , Ratas Sprague-Dawley
11.
J Biol Chem ; 290(26): 16372-82, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25971966

RESUMEN

The human Na(+)/multivitamin transporter (hSMVT) has been suggested to transport α-lipoic acid (LA), a potent antioxidant and anti-inflammatory agent used in therapeutic applications, e.g. in the treatment of diabetic neuropathy and Alzheimer disease. However, the molecular basis of the cellular delivery of LA and in particular the stereospecificity of the transport process are not well understood. Here, we expressed recombinant hSMVT in Pichia pastoris and used affinity chromatography to purify the detergent-solubilized protein followed by reconstitution of hSMVT in lipid bilayers. Using a combined approach encompassing radiolabeled LA transport and equilibrium binding studies in conjunction with the stabilized R-(+)- and S-(-)-enantiomers and the R,S-(+/-) racemic mixture of LA or lipoamide, we identified the biologically active form of LA, R-LA, to be the physiological substrate of hSMVT. Interaction of R-LA with hSMVT is strictly dependent on Na(+). Under equilibrium conditions, hSMVT can simultaneously bind ~2 molecules of R-LA in a biphasic binding isotherm with dissociation constants (Kd) of 0.9 and 7.4 µm. Transport of R-LA in the oocyte and reconstituted system is exclusively dependent on Na(+) and exhibits an affinity of ~3 µm. Measuring transport with known amounts of protein in proteoliposomes containing hSMVT in outside-out orientation yielded a catalytic turnover number (kcat) of about 1 s(-1), a value that is well in agreement with other Na(+)-coupled transporters. Our data suggest that hSMVT-mediated transport is highly specific for R-LA at our tested concentration range, a finding with wide ramifications for the use of LA in therapeutic applications.


Asunto(s)
Simportadores/metabolismo , Ácido Tióctico/metabolismo , Transporte Biológico , Biotina/metabolismo , Humanos , Yoduros/metabolismo , Cinética , Ácido Pantoténico/metabolismo , Estereoisomerismo , Especificidad por Sustrato , Simportadores/química , Simportadores/genética , Ácido Tióctico/química
12.
Chem Biol ; 21(12): 1648-59, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25500222

RESUMEN

Inducible Hsp70 (Hsp70i) is overexpressed in a wide spectrum of human tumors, and its expression correlates with metastasis, poor outcomes, and resistance to chemotherapy in patients. Identification of small-molecule inhibitors selective for Hsp70i could provide new therapeutic tools for cancer treatment. In this work, we used fluorescence-linked enzyme chemoproteomic strategy (FLECS) to identify HS-72, an allosteric inhibitor selective for Hsp70i. HS-72 displays the hallmarks of Hsp70 inhibition in cells, promoting substrate protein degradation and growth inhibition. Importantly, HS-72 is selective for Hsp70i over the closely related constitutively active Hsc70. Studies with purified protein show HS-72 acts as an allosteric inhibitor, reducing ATP affinity. In vivo HS-72 is well-tolerated, showing bioavailability and efficacy, inhibiting tumor growth and promoting survival in a HER2+ model of breast cancer. The HS-72 scaffold is amenable to resynthesis and iteration, suggesting an ideal starting point for a new generation of anticancer therapeutics targeting Hsp70i.


Asunto(s)
Bencimidazoles/química , Bencimidazoles/farmacología , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/metabolismo , Ácidos Nipecóticos/química , Ácidos Nipecóticos/farmacología , Piperidinas/química , Piperidinas/farmacología , Regulación Alostérica/efectos de los fármacos , Animales , Bencimidazoles/metabolismo , Bencimidazoles/farmacocinética , Disponibilidad Biológica , Caspasas/metabolismo , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Células HEK293 , Proteínas HSP70 de Choque Térmico/química , Humanos , Ratones , Modelos Moleculares , Ácidos Nipecóticos/metabolismo , Ácidos Nipecóticos/farmacocinética , Permeabilidad , Piperidinas/metabolismo , Piperidinas/farmacocinética , Agregado de Proteínas/efectos de los fármacos , Estructura Terciaria de Proteína , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Neurogastroenterol Motil ; 26(10): 1437-42, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25093998

RESUMEN

BACKGROUND: Heme oxygenase 1 (HO-1) degrades heme and protects against oxidative stress. In vitro and animal models suggest that HO-1 is beneficial in several diseases (e.g., postoperative ileus, gastroparesis, acute pancreatitis, and colitis). However, the only drugs (i.e., hemin and heme arginate) which pharmacologically upregulate HO-1 in humans are expensive and can only be administered intravenously. Our aims were to compare the effects of placebo, aspirin, and simvastatin alone, and with α-lipoic acid, on HO-1 protein concentration and activity in humans. METHODS: This randomized, double-blind, placebo-controlled study compared the effects of three oral regimens administered for 7 days, i.e., placebo; aspirin (325 mg twice daily) and simvastatin (40 mg twice daily); aspirin, simvastatin, and the sodium salt of R- α-lipoic acid (NaRLA, 600 mg three times daily) on markers of HO-1 activation (i.e., plasma HO-1 protein concentration and venous monocyte HO-1 protein activity) in 18 healthy subjects (14 females). Markers of HO-1 activation were evaluated at baseline, days 2, and 7. KEY RESULTS: Baseline HO-1 protein concentrations and activity were similar among the three groups. Compared to placebo, aspirin and simvastatin combined, or together with NaRLA did not affect HO-1 protein concentration or activity at 2 or 7 days. HO-1 protein concentrations and activity were correlated on day 7 (r = 0.75, p = 0.0004) but not at baseline and on day 2. CONCLUSIONS & INFERENCES: At therapeutic doses, aspirin, simvastatin, and α-lipoic acid do not increase plasma HO-1 protein concentration or venous monocyte HO-1 activity in healthy humans.


Asunto(s)
Aspirina/farmacología , Hemo-Oxigenasa 1/sangre , Simvastatina/farmacología , Ácido Tióctico/farmacología , Adulto , Aspirina/administración & dosificación , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Simvastatina/administración & dosificación , Ácido Tióctico/administración & dosificación , Adulto Joven
14.
ACS Chem Biol ; 8(12): 2715-23, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24070067

RESUMEN

DAPK1 and ZIPK (also called DAPK3) are closely related serine/threonine protein kinases that regulate programmed cell death and phosphorylation of non-muscle and smooth muscle myosin. We have developed a fluorescence linked enzyme chemoproteomic strategy (FLECS) for the rapid identification of inhibitors for any element of the purinome and identified a selective pyrazolo[3,4-d]pyrimidinone (HS38) that inhibits DAPK1 and ZIPK in an ATP-competitive manner at nanomolar concentrations. In cellular studies, HS38 decreased RLC20 phosphorylation. In ex vivo studies, HS38 decreased contractile force generated in mouse aorta, rabbit ileum, and calyculin A stimulated arterial muscle by decreasing RLC20 and MYPT1 phosphorylation. The inhibitor also promoted relaxation in Ca(2+)-sensitized vessels. A close structural analogue (HS43) with 5-fold lower affinity for ZIPK produced no effect on cells or tissues. These findings are consistent with a mechanism of action wherein HS38 specifically targets ZIPK in smooth muscle. The discovery of HS38 provides a lead scaffold for the development of therapeutic agents for smooth muscle related disorders and a chemical means to probe the function of DAPK1 and ZIPK across species.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/antagonistas & inhibidores , Proteínas Fluorescentes Verdes/metabolismo , Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinonas/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Aorta/citología , Aorta/efectos de los fármacos , Aorta/enzimología , Unión Competitiva , Calcio/metabolismo , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Íleon/citología , Íleon/efectos de los fármacos , Íleon/enzimología , Ratones , Contracción Muscular/efectos de los fármacos , Músculo Liso/citología , Músculo Liso/enzimología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/enzimología , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera , Fosforilación , Cultivo Primario de Células , Inhibidores de Proteínas Quinasas/química , Proteómica , Pirazoles/química , Pirimidinonas/química , Conejos , Proteínas Recombinantes de Fusión/genética
15.
J Phys Chem B ; 117(17): 4755-62, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23537272

RESUMEN

Atomic force microscopy (AFM) is used extensively for the investigation of noncovalent molecular association. Although the technique is used to derive various types of information, in almost all instances the frequency of complex formation, the magnitude of rupture forces, and the shape of the force-distance curve are used to determine the behavior of the system. We have used AFM to consider the effect of contact force on the unbinding profiles of lactose-galectin-3, as well as the control pairs lactose-KDPG aldolase, and mannose-galectin-3, where the interacting species show negligible solution-phase affinity. Increased contact forces (>250 pN) resulted in increased probabilitites of binding and decreased blocking efficiencies for the cognate ligand-receptor pair lactose-G3. Increased contact force applied to two control systems with no known affinity, mannose-G3 and lactose-KDPG aldolase, resulted in nonspecific ruptures that were indistinguishable from those of specific lactose-G3 interactions. These results demonstrate that careful experimental design is vital to the production of interpretable data, and suggest that contact force minimization is an effective technique for probing the unbinding forces and rupture lengths of only specific ligand-receptor interactions.


Asunto(s)
Aldehído-Liasas/química , Galectina 3/química , Lactosa/química , Manosa/química , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Animales , Galectina 3/genética , Galectina 3/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Proteínas Inmovilizadas/química , Ratones , Microscopía de Fuerza Atómica , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Silicio/química , Compuestos de Silicona/química
16.
Biopolymers ; 97(10): 761-5, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22806495

RESUMEN

Atomic force microscopy (AFM) is a versatile technique for the investigation of noncovalent molecular associations between ligand-substrate pairs. Surface modification of silicon nitride AFM cantilevers is most commonly achieved using organic trialkoxysilanes. However, susceptibility of the Si−O bond to hydrolysis and formation of polymeric aggregates diminishes attractiveness of this method for AFM studies. Attachment techniques that facilitate immobilization of a wide variety of organic and biological molecules via the stable Si−C bond on silicon nitride cantilevers would be of great value to the field of molecular recognition force spectroscopy. Here, we report (1) the formation of stable, highly oriented monolayers on the tip of silicon nitride cantilevers and (2) demonstrate their utility in the investigation of noncovalent protein-ligand interactions using molecular recognition force spectroscopy. The monolayers are formed through hydrosilylation of hydrogen-terminated silicon nitride AFM probes using a protected α-amino-ω-alkene. This approach facilitates the subsequent conjugation of biomolecules. The resulting biomolecules are bound to the tip by a strong Si−C bond, completely uniform with regard to both epitope density and substrate orientation, and highly suitable for force microscopy studies. We show that this attachment technique can be used to measure the unbinding profiles of tip-immobilized lactose and surface-immobilized galectin-3. Overall, the proposed technique is general, operationally simple, and can be expanded to anchor a wide variety of epitopes to a silicon nitride cantilever using a stable Si−C bond.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Hidrólisis , Ligandos , Oxígeno/química , Proteínas/química , Silicio/química
17.
Bioorg Med Chem ; 20(10): 3298-305, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22520629

RESUMEN

Over 200 proteins have been identified that interact with the protein chaperone Hsp90, a recognized therapeutic target thought to participate in non-oncogene addiction in a variety of human cancers. However, defining Hsp90 clients is challenging because interactions between Hsp90 and its physiologically relevant targets involve low affinity binding and are thought to be transient. Using a chemo-proteomic strategy, we have developed a novel orthogonally cleavable Hsp90 affinity resin that allows purification of the native protein and is quite selective for Hsp90 over its immediate family members, GRP94 and TRAP 1. We show that the resin can be used under low stringency conditions for the rapid, unambiguous capture of native Hsp90 in complex with a native client. We also show that the choice of linker used to tether the ligand to the insoluble support can have a dramatic effect on the selectivity of the affinity media.


Asunto(s)
Cromatografía de Afinidad/instrumentación , Proteínas HSP90 de Choque Térmico/metabolismo , Resinas Sintéticas/química , Resinas Sintéticas/metabolismo , Animales , Electroforesis en Gel de Poliacrilamida , Proteínas HSP90 de Choque Térmico/química , Humanos , Concentración de Iones de Hidrógeno , Ratones , Unión Proteica , Proteómica , Sensibilidad y Especificidad , Porcinos
18.
J Org Chem ; 76(19): 8131-7, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21854041

RESUMEN

2,4-Disubstituted furans are prepared by treating 2,3-dibromo-1-phenylsulfonyl-1-propene (DBP, 2) with 1,3-diketones under basic conditions. The furan-forming step involves a deacetylation, and the selectivity of this process depends upon the steric demand of the R group. The substituent in position 4 is elaborated by reaction of sulfonyl carbanions with alkyl halides, acyl halides, and aldehydes. Oxidative or reductive desulfonylation produces the 2,4-disubstituted furans in 60-92% yield. This strategy has been used to prepare rabdoketone A (12) and the naturally occurring nematotoxic furoic acid 13.

19.
Adv Drug Deliv Rev ; 60(13-14): 1463-70, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18655815

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that destroys patient memory and cognition, communication ability with the social environment and the ability to carry out daily activities. Despite extensive research into the pathogenesis of AD, a neuroprotective treatment - particularly for the early stages of disease - remains unavailable for clinical use. In this review, we advance the suggestion that lipoic acid (LA) may fulfil this therapeutic need. A naturally occurring cofactor for the mitochondrial enzymes pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, LA has been shown to have a variety of properties which can interfere with the pathogenesis or progression of AD. For example, LA increases acetylcholine (ACh) production by activation of choline acetyltransferase and increases glucose uptake, thus supplying more acetyl-CoA for the production of ACh. LA chelates redox-active transition metals, thus inhibiting the formation of hydroxyl radicals and also scavenges reactive oxygen species (ROS), thereby increasing the levels of reduced glutathione. In addition, LA down-regulates the expression of redox-sensitive pro-inflammatory proteins including TNF and inducible nitric oxide synthase. Furthermore, LA can scavenge lipid peroxidation products such as hydroxynonenal and acrolein. In human plasma, LA exists in an equilibrium of free and plasma protein bound form. Up to 150 muM, it is bound completely, most likely binding to high affinity fatty acid sites on human serum albumin, suggesting that one large dose rather than continuous low doses (as provided by "slow release" LA) will be beneficial for delivery of LA to the brain. Evidence for a clinical benefit for LA in dementia is yet limited. There are only two published studies, in which 600 mg LA was given daily to 43 patients with AD (receiving a standard treatment with choline-esterase inhibitors) in an open-label study over an observation period of up to 48 months. Whereas the improvement in patients with moderate dementia was not significant, the disease progressed extremely slowly (change in ADAScog: 1.2 points=year, MMSE: -0.6 points=year) in patients with mild dementia (ADAScog<15). Data from cell culture and animal models suggest that LA could be combined with nutraceuticals such as curcumin, (-)-epigallocatechin gallate (from green tea) and docosahexaenoic acid (from fish oil) to synergistically decrease oxidative stress, inflammation, Abeta levels and Abeta plaque load and thus provide a combined benefit in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antiinflamatorios no Esteroideos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Ácido Tióctico/uso terapéutico , Acetilcolina/biosíntesis , Enfermedad de Alzheimer/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Quelantes/farmacocinética , Quelantes/farmacología , Quelantes/uso terapéutico , Colina O-Acetiltransferasa/biosíntesis , Ensayos Clínicos como Asunto , Suplementos Dietéticos , Depuradores de Radicales Libres/farmacocinética , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/uso terapéutico , Humanos , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/farmacología , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Ácido Tióctico/farmacocinética , Ácido Tióctico/farmacología
20.
Altern Med Rev ; 12(4): 343-51, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18069903

RESUMEN

BACKGROUND: The racemic mixture, RS-(+/-)-alpha-lipoic acid (rac-LA) has been utilized clinically and in a variety of disease models. Rac-LA and the natural form, R-lipoic acid (RLA), are widely available as nutritional supplements, marketed as antioxidants. Rac-LA sodium salt (NaLA) or rac-LA potassium salt (KLA) has been used to improve the aqueous solubility of LA. STUDY RATIONALE: Several in vitro and animal models of aging and age-related diseases have demonstrated efficacy for the oral solutions of LA salts in normalizing age-related changes to those of young animals. Other models and studies have demonstrated the superiority of RLA, the naturally occurring isomer over rac-LA. Despite this, RLA pharmacokinetics (PK) is not fully characterized in humans, and it is unknown whether the concentrations utilized in animal models can be achieved in vivo. Due to its tendency to polymerize, RLA is relatively unstable and suffers poor aqueous solubility, leading to poor absorption and low bioavailability. A preliminary study demonstrated the stability and bioavailability were improved by converting RLA to its sodium salt (NaRLA) and pre-dissolving it in water. The current study extends earlier findings from this laboratory and presents PK data for the 600-mg oral dosing of 12 healthy adult subjects given NaRLA. In addition, the effect of three consecutive doses was tested on a single subject relative to a one-time dosing in the same subject to determine whether plasma maximum concentration (Cmax) and the area under the plasma concentration versus time curve (AUC) values were comparable to those in animal studies and those achievable via intravenous infusions in humans. METHODS: Plasma RLA was separated from protein by a modification of a published method. Standard curves were generated from spiking known concentrations of RLA dissolved in ethanol and diluted in a phosphate-buffered saline (PBS) into each individual's baseline plasma to account for inter-individual differences in protein binding and to prevent denaturing of plasma proteins. Plasma RLA content was determined by the percent recovery using high-performance liquid chromatography (electrochemical/coulometric detection) (HPLC/ECD). RESULTS: As anticipated from the preliminary study, NaRLA is less prone to polymerization, completely soluble in water, and displays significantly higher Cmax and AUC values and decreased time to maximum concentration (Tmax) and T1/2 values than RLA or rac-LA. In order to significantly extend Cmax and AUC, it is possible to administer three 600-mg RLA doses (as NaRLA) at 15-minute intervals to achieve plasma concentrations similar to those from a slow (20-minute) infusion of LA. This is the first study to report negligible unbound RLA even at the highest achievable plasma concentrations.


Asunto(s)
Ácido Tióctico/farmacocinética , Área Bajo la Curva , Disponibilidad Biológica , Femenino , Humanos , Isomerismo , Masculino , Persona de Mediana Edad , Ácido Tióctico/administración & dosificación , Ácido Tióctico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA