Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Fish Biol ; 103(6): 1549-1555, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37602958

RESUMEN

Three Odontaspis ferox (confirmed by mtDNA barcoding) were found in the English Channel and Celtic Sea in 2023 at Lepe, UK (50.7846, -1.3508), Kilmore Quay, Ireland (52.1714, -6.5937), and Lyme Bay, UK (50.6448, -2.9302). These are the first records of O. ferox in either country, and extend the species' range by over three degrees of latitude, to >52° N. They were ~275 (female), 433 (female), and 293 cm (male) total length, respectively. These continue a series of new records, possibly indicative of a climate change-induced shift in the species' range.


Asunto(s)
Tiburones , Masculino , Femenino , Animales , Tiburones/genética , Irlanda , ADN Mitocondrial/genética , Reino Unido , Cambio Climático
2.
Nat Commun ; 14(1): 4070, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429918

RESUMEN

Glucose transporters (GLUTs) are essential for organism-wide glucose homeostasis in mammals, and their dysfunction is associated with numerous diseases, such as diabetes and cancer. Despite structural advances, transport assays using purified GLUTs have proven to be difficult to implement, hampering deeper mechanistic insights. Here, we have optimized a transport assay in liposomes for the fructose-specific isoform GLUT5. By combining lipidomic analysis with native MS and thermal-shift assays, we replicate the GLUT5 transport activities seen in crude lipids using a small number of synthetic lipids. We conclude that GLUT5 is only active under a specific range of membrane fluidity, and that human GLUT1-4 prefers a similar lipid composition to GLUT5. Although GLUT3 is designated as the high-affinity glucose transporter, in vitro D-glucose kinetics demonstrates that GLUT1 and GLUT3 actually have a similar KM, but GLUT3 has a higher turnover. Interestingly, GLUT4 has a high KM for D-glucose and yet a very slow turnover, which may have evolved to ensure uptake regulation by insulin-dependent trafficking. Overall, we outline a much-needed transport assay for measuring GLUT kinetics and our analysis implies that high-levels of free fatty acid in membranes, as found in those suffering from metabolic disorders, could directly impair glucose uptake.


Asunto(s)
Ácidos Grasos no Esterificados , Liposomas , Humanos , Animales , Cinética , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 3/genética , Glucosa , Mamíferos
3.
Eur J Med Chem ; 257: 115419, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37301076

RESUMEN

Development of subtype-selective leads is essential in drug discovery campaigns targeting G protein-coupled receptors (GPCRs). Herein, a structure-based virtual screening approach to rationally design subtype-selective ligands was applied to the A1 and A2A adenosine receptors (A1R and A2AR). Crystal structures of these closely related subtypes revealed a non-conserved subpocket in the binding sites that could be exploited to identify A1R selective ligands. A library of 4.6 million compounds was screened computationally against both receptors using molecular docking and 20 A1R selective ligands were predicted. Of these, seven antagonized the A1R with micromolar activities and several compounds displayed slight selectivity for this subtype. Twenty-seven analogs of two discovered scaffolds were designed, resulting in antagonists with nanomolar potency and up to 76-fold A1R-selectivity. Our results show the potential of structure-based virtual screening to guide discovery and optimization of subtype-selective ligands, which could facilitate the development of safer drugs.


Asunto(s)
Adenosina , Antagonistas de Receptores Purinérgicos P1 , Antagonistas de Receptores Purinérgicos P1/farmacología , Antagonistas de Receptores Purinérgicos P1/química , Simulación del Acoplamiento Molecular , Ligandos , Sitios de Unión , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A1/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/química
4.
Molecules ; 28(10)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37241951

RESUMEN

The dopamine D2 receptor, which belongs to the family of G protein-coupled receptors (GPCR), is an important and well-validated drug target in the field of medicinal chemistry due to its wide distribution, particularly in the central nervous system, and involvement in the pathomechanism of many disorders thereof. Schizophrenia is one of the most frequent diseases associated with disorders in dopaminergic neurotransmission, and in which the D2 receptor is the main target for the drugs used. In this work, we aimed at discovering new selective D2 receptor antagonists with potential antipsychotic activity. Twenty-three compounds were synthesized, based on the scaffold represented by the D2AAK2 compound, which was discovered by our group. This compound is an interesting example of a D2 receptor ligand because of its non-classical binding to this target. Radioligand binding assays and SAR analysis indicated structural modifications of D2AAK2 that are possible to maintain its activity. These findings were further rationalized using molecular modeling. Three active derivatives were identified as D2 receptor antagonists in cAMP signaling assays, and the selected most active compound 17 was subjected to X-ray studies to investigate its stable conformation in the solid state. Finally, effects of 17 assessed in animal models confirmed its antipsychotic activity in vivo.


Asunto(s)
Antipsicóticos , Esquizofrenia , Animales , Esquizofrenia/tratamiento farmacológico , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Antipsicóticos/química , Dopamina/uso terapéutico , Receptores Dopaminérgicos , Ensayo de Unión Radioligante , Receptores de Dopamina D3/uso terapéutico
5.
Angew Chem Int Ed Engl ; 62(22): e202218959, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36914577

RESUMEN

G-protein-coupled receptors (GPCRs) play important roles in physiological processes and are modulated by drugs that either activate or block signaling. Rational design of the pharmacological efficacy profiles of GPCR ligands could enable the development of more efficient drugs, but is challenging even if high-resolution receptor structures are available. We performed molecular dynamics simulations of the ß2 adrenergic receptor in active and inactive conformations to assess if binding free energy calculations can predict differences in ligand efficacy for closely related compounds. Previously identified ligands were successfully classified into groups with comparable efficacy profiles based on the calculated shift in ligand affinity upon activation. A series of ligands were then predicted and synthesized, leading to the discovery of partial agonists with nanomolar potencies and novel scaffolds. Our results demonstrate that free energy simulations enable design of ligand efficacy and the same approach can be applied to other GPCR drug targets.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , Simulación de Dinámica Molecular , Receptores Adrenérgicos , Receptores Adrenérgicos beta 2/química , Conformación Proteica
7.
R Soc Open Sci ; 9(9): 220453, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36133150

RESUMEN

Atlantic herring in International Council for Exploration of the Sea (ICES) Divisions 6.a, 7.b-c comprises at least three populations, distinguished by temporal and spatial differences in spawning, which have until recently been managed as two stocks defined by geographical delineators. Outside of spawning the populations form mixed aggregations, which are the subject of acoustic surveys. The inability to distinguish the populations has prevented the development of separate survey indices and separate stock assessments. A panel of 45 single-nucleotide polymorphisms, derived from whole-genome sequencing, were used to genotype 3480 baseline spawning samples (2014-2021). A temporally stable baseline comprising 2316 herring from populations known to inhabit Division 6.a was used to develop a genetic assignment method, with a self-assignment accuracy greater than 90%. The long-term temporal stability of the assignment model was validated by assigning archive (2003-2004) baseline samples (270 individuals) with a high level of accuracy. Assignment of non-baseline samples (1514 individuals) from Divisions 6.a, 7.b-c indicated previously unrecognized levels of mixing of populations outside of the spawning season. The genetic markers and assignment models presented constitute a 'toolbox' that can be used for the assignment of herring caught in mixed survey and commercial catches in Division 6.a into their population of origin with a high level of accuracy.

8.
ACS Chem Biol ; 17(10): 2744-2752, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36149353

RESUMEN

Recently determined structures of class C G protein-coupled receptors (GPCRs) revealed the location of allosteric binding sites and opened new opportunities for the discovery of novel modulators. In this work, molecular docking screens for allosteric modulators targeting the metabotropic glutamate receptor 5 (mGlu5) were performed. The mGlu5 receptor is activated by the main excitatory neurotransmitter of the nervous central system, L-glutamate, and mGlu5 receptor activity can be allosterically modulated by negative or positive allosteric modulators. The mGlu5 receptor is a promising target for the treatment of psychiatric and neurodegenerative diseases, and several allosteric modulators of this GPCR have been evaluated in clinical trials. Chemical libraries containing fragment- (1.6 million molecules) and lead-like (4.6 million molecules) compounds were docked to an allosteric binding site of mGlu5 identified in X-ray crystal structures. Among the top-ranked compounds, 59 fragments and 59 lead-like compounds were selected for experimental evaluation. Of these, four fragment- and seven lead-like compounds were confirmed to bind to the allosteric site with affinities ranging from 0.43 to 8.6 µM, corresponding to a hit rate of 9%. The four compounds with the highest affinities were demonstrated to be negative allosteric modulators of mGlu5 signaling in functional assays. The results demonstrate that virtual screens of fragment- and lead-like chemical libraries have complementary advantages and illustrate how access to high-resolution structures of GPCRs in complex with allosteric modulators can accelerate lead discovery.


Asunto(s)
Receptor del Glutamato Metabotropico 5 , Bibliotecas de Moléculas Pequeñas , Receptor del Glutamato Metabotropico 5/metabolismo , Regulación Alostérica , Simulación del Acoplamiento Molecular , Bibliotecas de Moléculas Pequeñas/farmacología , Ligandos , Ácido Glutámico , Sitio Alostérico , Receptores Acoplados a Proteínas G
9.
J Gen Virol ; 103(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36125358

RESUMEN

The virus family Totiviridae had originally been considered to include only viruses which infected fungal and protist hosts, but since 2006 a growing number of viruses found in invertebrates and fish have been shown to cluster phylogenetically within this family. These Totiviridae-like, or toti-like, viruses do not appear to belong within any existing genera of Totiviridae, and whilst a number of new genus names have been suggested, none has yet been universally accepted. Within this growing number of toti-like viruses from animal hosts, there exists emerging viral threats particularly to aquaculture, namely Infectious myonecrosis virus in whiteleg shrimp and Piscine myocarditis virus (PMCV) in Atlantic salmon (Salmo salar). PMCV in particular continues to be an issue in salmon aquaculture as a number of questions remain unanswered about how the virus is transmitted and the route of entry into host fish. Using a phylogenetic approach, this study shows how PMCV and the other fish toti-like viruses probably have deeper origins in an arthropod host. Based on this, it is hypothesized that sea lice could be acting as a vector for PMCV, as seen with other RNA viruses in Atlantic salmon aquaculture and in the toti-like Cucurbit yellows-associated virus which is spread by the greenhouse whitefly Trialeurodes vaporariorum.


Asunto(s)
Enfermedades de los Peces , Salmo salar , Totiviridae , Animales , Invertebrados , Filogenia , Totiviridae/genética
10.
Sci Rep ; 12(1): 13875, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974032

RESUMEN

Bacteria in the Shigella genus remain a major cause of dysentery in sub-Saharan Africa, and annually cause an estimated 600,000 deaths worldwide. Being spread by contaminated food and water, this study highlights how wild caught food, in the form of freshwater catfish, can act as vectors for Shigella flexneri in Southern Kenya. A metatranscriptomic approach was used to identify the presence of Shigella flexneri in the catfish which had been caught for consumption from the Galana river. The use of nanopore sequencing was shown to be a simple and effective method to highlight the presence of Shigella flexneri and could represent a potential new tool in the detection and prevention of this deadly pathogen. Rather than the presence/absence results of more traditional testing methods, the use of metatranscriptomics highlighted how primarily one SOS response gene was being transcribed, suggesting the bacteria may be dormant in the catfish. Additionally, COI sequencing of the vector catfish revealed they likely represent a cryptic species. Morphological assignment suggested the fish were widehead catfish Clarotes laticeps, which range across Africa, but the COI sequences from the Kenyan fish are distinctly different from C. laticeps sequenced in West Africa.


Asunto(s)
Bagres , Disentería Bacilar , Nanoporos , Shigella , Animales , Bagres/genética , Disentería Bacilar/microbiología , Kenia , Shigella flexneri/genética
11.
Mol Neurobiol ; 59(10): 5955-5969, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35829830

RESUMEN

The adenosine A2A receptor (A2AR), dopamine D2 receptor (D2R) and metabotropic glutamate receptor type 5 (mGluR5) form A2AR-D2R-mGluR5 heteroreceptor complexes in living cells and in rat striatal neurons. In the current study, we present experimental data supporting the view that the A2AR protomer plays a major role in the inhibitory modulation of the density and the allosteric receptor-receptor interaction within the D2R-mGluR5 heteromeric component of the A2AR-D2R-mGluR5 complex in vitro and in vivo. The A2AR and mGluR5 protomers interact and modulate D2R protomer recognition and signalling upon forming a trimeric complex from these receptors. Expression of A2AR in HEK293T cells co-expressing D2R and mGluR5 resulted in a significant and marked increase in the formation of the D2R-mGluR5 heteromeric component in both bioluminescence resonance energy transfer and proximity ligation assays. A highly significant increase of the the high-affinity component of D2R (D2RKi High) values was found upon cotreatment with the mGluR5 and A2AR agonists in the cells expressing A2AR, D2R and mGluR5 with a significant effect observed also with the mGluR5 agonist alone compared to cells expressing only D2R and mGluR5. In cells co-expressing A2AR, D2R and mGluR5, stimulation of the cells with an mGluR5 agonist like or D2R antagonist fully counteracted the D2R agonist-induced inhibition of the cAMP levels which was not true in cells only expressing mGluR5 and D2R. In agreement, the mGluR5-negative allosteric modulator raseglurant significantly reduced the haloperidol-induced catalepsy in mice, and in A2AR knockout mice, the haloperidol action had almost disappeared, supporting a functional role for mGluR5 and A2AR in enhancing D2R blockade resulting in catalepsy. The results represent a relevant example of integrative activity within higher-order heteroreceptor complexes.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Adenosina , Animales , Catalepsia , Células HEK293 , Haloperidol , Humanos , Ratones , Subunidades de Proteína , Ratas , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo
12.
J Med Chem ; 65(4): 3473-3517, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35108001

RESUMEN

Upregulation of the transcription factor Nrf2 by inhibition of the interaction with its negative regulator Keap1 constitutes an opportunity for the treatment of disease caused by oxidative stress. We report a structurally unique series of nanomolar Keap1 inhibitors obtained from a natural product-derived macrocyclic lead. Initial exploration of the structure-activity relationship of the lead, followed by structure-guided optimization, resulted in a 100-fold improvement in inhibitory potency. The macrocyclic core of the nanomolar inhibitors positions three pharmacophore units for productive interactions with key residues of Keap1, including R415, R483, and Y572. Ligand optimization resulted in the displacement of a coordinated water molecule from the Keap1 binding site and a significantly altered thermodynamic profile. In addition, minor reorganizations of R415 and R483 were accompanied by major differences in affinity between ligands. This study therefore indicates the importance of accounting both for the hydration and flexibility of the Keap1 binding site when designing high-affinity ligands.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Compuestos Macrocíclicos/farmacología , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Animales , Sitios de Unión , Hepatocitos/metabolismo , Humanos , Ligandos , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Ratas , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
13.
J Am Chem Soc ; 144(7): 2905-2920, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35142215

RESUMEN

Drugs targeting SARS-CoV-2 could have saved millions of lives during the COVID-19 pandemic, and it is now crucial to develop inhibitors of coronavirus replication in preparation for future outbreaks. We explored two virtual screening strategies to find inhibitors of the SARS-CoV-2 main protease in ultralarge chemical libraries. First, structure-based docking was used to screen a diverse library of 235 million virtual compounds against the active site. One hundred top-ranked compounds were tested in binding and enzymatic assays. Second, a fragment discovered by crystallographic screening was optimized guided by docking of millions of elaborated molecules and experimental testing of 93 compounds. Three inhibitors were identified in the first library screen, and five of the selected fragment elaborations showed inhibitory effects. Crystal structures of target-inhibitor complexes confirmed docking predictions and guided hit-to-lead optimization, resulting in a noncovalent main protease inhibitor with nanomolar affinity, a promising in vitro pharmacokinetic profile, and broad-spectrum antiviral effect in infected cells.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antivirales/metabolismo , Antivirales/farmacocinética , Dominio Catalítico , Chlorocebus aethiops , Proteasas 3C de Coronavirus/química , Inhibidores de Cisteína Proteinasa/metabolismo , Inhibidores de Cisteína Proteinasa/farmacocinética , Evaluación Preclínica de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacocinética , Células Vero
14.
Br J Pharmacol ; 179(14): 3496-3511, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-32424811

RESUMEN

A long evolution of knowledge of the psychostimulant caffeine led in the 1960s to another purine natural product, adenosine and its A2A receptor. Adenosine is a short-lived autocrine/paracrine mediator that acts pharmacologically at four different adenosine receptors in a manner opposite to the pan-antagonist caffeine and serves as an endogenous allostatic regulator. Although detrimental in the developing brain, caffeine appears to be cerebroprotective in aging. Moderate caffeine consumption in adults, except in pregnancy, may also provide benefit in pain, diabetes, and kidney and liver disorders. Inhibition of A2A receptors is one of caffeine's principal effects and we now understand this interaction at the atomic level. The A2A receptor has become a prototypical example of utilizing high-resolution structures of GPCRs for the rational design of chemically diverse drug molecules. The previous focus on discovery of selective A2A receptor antagonists for neurodegenerative diseases has expanded to include immunotherapy for cancer, and clinical trials have ensued. LINKED ARTICLES: This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc.


Asunto(s)
Cafeína , Receptor de Adenosina A2A , Adenosina/metabolismo , Antagonistas del Receptor de Adenosina A1/farmacología , Cafeína/farmacología , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo
16.
Pharmacol Rev ; 73(4): 527-565, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34907092

RESUMEN

G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome and are important therapeutic targets. During the last decade, the number of atomic-resolution structures of GPCRs has increased rapidly, providing insights into drug binding at the molecular level. These breakthroughs have created excitement regarding the potential of using structural information in ligand design and initiated a new era of rational drug discovery for GPCRs. The molecular docking method is now widely applied to model the three-dimensional structures of GPCR-ligand complexes and screen for chemical probes in large compound libraries. In this review article, we first summarize the current structural coverage of the GPCR superfamily and the understanding of receptor-ligand interactions at atomic resolution. We then present the general workflow of structure-based virtual screening and strategies to discover GPCR ligands in chemical libraries. We assess the state of the art of this research field by summarizing prospective applications of virtual screening based on experimental structures. Strategies to identify compounds with specific efficacy and selectivity profiles are discussed, illustrating the opportunities and limitations of the molecular docking method. Our overview shows that structure-based virtual screening can discover novel leads and will be essential in pursuing the next generation of GPCR drugs. SIGNIFICANCE STATEMENT: Extraordinary advances in the structural biology of G protein-coupled receptors have revealed the molecular details of ligand recognition by this large family of therapeutic targets, providing novel avenues for rational drug design. Structure-based docking is an efficient computational approach to identify novel chemical probes from large compound libraries, which has the potential to accelerate the development of drug candidates.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Sitios de Unión , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo
17.
Chem Commun (Camb) ; 57(92): 12305-12308, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34734588

RESUMEN

Fragment-based drug discovery relies on successful optimization of weakly binding ligands for affinity and selectivity. Herein, we explored strategies for structure-based evolution of fragments binding to a G protein-coupled receptor. Molecular dynamics simulations combined with rigorous free energy calculations guided synthesis of nanomolar ligands with up to >1000-fold improvements of binding affinity and close to 40-fold subtype selectivity.

18.
Sci Rep ; 11(1): 20682, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667245

RESUMEN

Amoebic Gill Disease (AGD), caused by the protozoan extracellular parasite Paramoeba perurans (P. perurans) is a disease affecting Atlantic salmon (Salmo salar). This study investigated the gill transcriptomic profile of pre-clinical AGD using RNA-sequencing (RNA-seq) technology. RNA-seq libraries generated at 0, 4, 7, 14 and 16 days post infection (dpi) identified 19,251 differentially expressed genes (DEGs) of which 56.2% were up-regulated. DEGs mapped to 224 Gene Ontology (GO) terms including 140 biological processes (BP), 45 cellular components (CC), and 39 molecular functions (MF). A total of 27 reference pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and 15 Reactome gene sets were identified. The RNA-seq data was validated using real-time, quantitative PCR (qPCR). A host immune response though the activation of complement and the acute phase genes was evident at 7 dpi, with a concurrent immune suppression involving cytokine signalling, notably in interleukins, interferon regulatory factors and tumour necrosis factor-alpha (tnf-α) genes. Down-regulated gene expression with involvement in receptor signalling pathways (NOD-like, Toll-like and RIG-1) were also identified. The results of this study support the theory that P. perurans can evade immune surveillance during the initial stages of gill colonisation through interference of signal transduction pathways.


Asunto(s)
Amebiasis/genética , Enfermedades de los Peces/genética , Branquias/parasitología , Salmo salar/genética , Transcriptoma/genética , Amebiasis/parasitología , Amébidos/patogenicidad , Animales , Enfermedades de los Peces/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Salmo salar/parasitología , Análisis de Secuencia de ARN/métodos
19.
Nature ; 597(7877): 571-576, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497422

RESUMEN

The adenosine A1 receptor (A1R) is a promising therapeutic target for non-opioid analgesic agents to treat neuropathic pain1,2. However, development of analgesic orthosteric A1R agonists has failed because of a lack of sufficient on-target selectivity as well as off-tissue adverse effects3. Here we show that [2-amino-4-(3,5-bis(trifluoromethyl)phenyl)thiophen-3-yl)(4-chlorophenyl)methanone] (MIPS521), a positive allosteric modulator of the A1R, exhibits analgesic efficacy in rats in vivo through modulation of the increased levels of endogenous adenosine that occur in the spinal cord of rats with neuropathic pain. We also report the structure of the A1R co-bound to adenosine, MIPS521 and a Gi2 heterotrimer, revealing an extrahelical lipid-detergent-facing allosteric binding pocket that involves transmembrane helixes 1, 6 and 7. Molecular dynamics simulations and ligand kinetic binding experiments support a mechanism whereby MIPS521 stabilizes the adenosine-receptor-G protein complex. This study provides proof of concept for structure-based allosteric drug design of non-opioid analgesic agents that are specific to disease contexts.


Asunto(s)
Analgesia , Receptor de Adenosina A1/metabolismo , Adenosina/química , Adenosina/metabolismo , Regulación Alostérica/efectos de los fármacos , Analgesia/métodos , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Femenino , Subunidad alfa de la Proteína de Unión al GTP Gi2/química , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Hiperalgesia/tratamiento farmacológico , Lípidos , Masculino , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Estabilidad Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A1/química , Transducción de Señal/efectos de los fármacos
20.
Nat Protoc ; 16(10): 4799-4832, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34561691

RESUMEN

Structure-based docking screens of large compound libraries have become common in early drug and probe discovery. As computer efficiency has improved and compound libraries have grown, the ability to screen hundreds of millions, and even billions, of compounds has become feasible for modest-sized computer clusters. This allows the rapid and cost-effective exploration and categorization of vast chemical space into a subset enriched with potential hits for a given target. To accomplish this goal at speed, approximations are used that result in undersampling of possible configurations and inaccurate predictions of absolute binding energies. Accordingly, it is important to establish controls, as are common in other fields, to enhance the likelihood of success in spite of these challenges. Here we outline best practices and control docking calculations that help evaluate docking parameters for a given target prior to undertaking a large-scale prospective screen, with exemplification in one particular target, the melatonin receptor, where following this procedure led to direct docking hits with activities in the subnanomolar range. Additional controls are suggested to ensure specific activity for experimentally validated hit compounds. These guidelines should be useful regardless of the docking software used. Docking software described in the outlined protocol (DOCK3.7) is made freely available for academic research to explore new hits for a range of targets.


Asunto(s)
Diseño de Fármacos , Simulación del Acoplamiento Molecular , Ligandos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...