Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7044, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923728

RESUMEN

Regulation of biological processes according to a 24-hr rhythm is essential for the normal functioning of an organism. Temporal variation in brain MRI data has often been attributed to circadian or diurnal oscillations; however, it is not clear if such oscillations exist. Here, we provide evidence that diurnal oscillations indeed govern multiple MRI metrics. We recorded cerebral blood flow, diffusion-tensor metrics, T1 relaxation, and cortical structural features every three hours over a 24-hr period in each of 16 adult male controls and eight adult male participants with bipolar disorder. Diurnal oscillations are detected in numerous MRI metrics at the whole-brain level, and regionally. Rhythmicity parameters in the participants with bipolar disorder are similar to the controls for most metrics, except for a larger phase variation in cerebral blood flow. The ubiquitous nature of diurnal oscillations has broad implications for neuroimaging studies and furthers our understanding of the dynamic nature of the human brain.


Asunto(s)
Trastorno Bipolar , Ritmo Circadiano , Adulto , Humanos , Masculino , Ritmo Circadiano/fisiología , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Neuroimagen
2.
PLoS One ; 18(7): e0289171, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37498822

RESUMEN

Reproducibility is crucial for scientific progress, yet a clear research data analysis workflow is challenging to implement and maintain. As a result, a record of computational steps performed on the data to arrive at the key research findings is often missing. We developed Scikick, a tool that eases the configuration, execution, and presentation of scientific computational analyses. Scikick allows for workflow configurations with notebooks as the units of execution, defines a standard structure for the project, automatically tracks the defined interdependencies between the data analysis steps, and implements methods to compile all research results into a cohesive final report. Utilities provided by Scikick help turn the complicated management of transparent data analysis workflows into a standardized and feasible practice. Scikick version 0.2.1 code and documentation is available as supplementary material. The Scikick software is available on GitHub (https://github.com/matthewcarlucci/scikick) and is distributed with PyPi (https://pypi.org/project/scikick/) under a GPL-3 license.


Asunto(s)
Biología Computacional , Programas Informáticos , Biología Computacional/métodos , Flujo de Trabajo , Reproducibilidad de los Resultados , Análisis de Datos
4.
Bioinformatics ; 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31702788

RESUMEN

MOTIVATION: Biological rhythmicity is fundamental to almost all organisms on Earth and plays a key role in health and disease. Identification of oscillating signals could lead to novel biological insights, yet its investigation is impeded by the extensive computational and statistical knowledge required to perform such analysis. RESULTS: To address this issue, we present DiscoRhythm (Discovering Rhythmicity), a user-friendly application for characterizing rhythmicity in temporal biological data. DiscoRhythm is available as a web application or an R/Bioconductor package for estimating phase, amplitude, and statistical significance using four popular approaches to rhythm detection (Cosinor, JTK Cycle, ARSER, and Lomb-Scargle). We optimized these algorithms for speed, improving their execution times up to 30-fold to enable rapid analysis of -omic-scale datasets in real-time. Informative visualizations, interactive modules for quality control, dimensionality reduction, periodicity profiling, and incorporation of experimental replicates make DiscoRhythm a thorough toolkit for analyzing rhythmicity. AVAILABILITY AND IMPLEMENTATION: The DiscoRhythm R package is available on Bioconductor (https://bioconductor.org/packages/DiscoRhythm), with source code available on GitHub (https://github.com/matthewcarlucci/DiscoRhythm) under a GPL-3 license. The web application is securely deployed over HTTPS (https://disco.camh.ca) and is freely available for use worldwide. Local instances of the DiscoRhythm web application can be created using the R package or by deploying the publicly available Docker container (https://hub.docker.com/r/mcarlucci/discorhythm). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
Genome Biol ; 20(1): 2, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30606238

RESUMEN

BACKGROUND: Maintenance of physiological circadian rhythm plays a crucial role in human health. Numerous studies have shown that disruption of circadian rhythm may increase risk for malignant, psychiatric, metabolic, and other diseases. RESULTS: Extending our recent findings of oscillating cytosine modifications (osc-modCs) in mice, in this study, we show that osc-modCs are also prevalent in human neutrophils. Osc-modCs may play a role in gene regulation, can explain parts of intra- and inter-individual epigenetic variation, and are signatures of aging. Finally, we show that osc-modCs are linked to three complex diseases and provide a new interpretation of cross-sectional epigenome-wide association studies. CONCLUSIONS: Our findings suggest that loss of balance between cytosine methylation and demethylation during the circadian cycle can be a potential mechanism for complex disease. Additional experiments, however, are required to investigate the possible involvement of confounding effects, such as hidden cellular heterogeneity. Circadian rhythmicity, one of the key adaptations of life forms on Earth, may contribute to frailty later in life.


Asunto(s)
Envejecimiento/metabolismo , Ritmo Circadiano , Citosina/metabolismo , Epigénesis Genética , Neutrófilos/metabolismo , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Masculino , Persona de Mediana Edad , Esquizofrenia/metabolismo
6.
Nat Commun ; 9(1): 644, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440637

RESUMEN

Circadian rhythmicity governs a remarkable array of fundamental biological functions and is mediated by cyclical transcriptomic and proteomic activities. Epigenetic factors are also involved in this circadian machinery; however, despite extensive efforts, detection and characterization of circadian cytosine modifications at the nucleotide level have remained elusive. In this study, we report that a large proportion of epigenetically variable cytosines show a circadian pattern in their modification status in mice. Importantly, the cytosines with circadian epigenetic oscillations significantly overlap with the cytosines exhibiting age-related changes in their modification status. Our findings suggest that evolutionary advantageous processes such as circadian rhythmicity can also contribute to an organism's deterioration.


Asunto(s)
Envejecimiento/genética , Ritmo Circadiano/genética , Citosina/metabolismo , Metilación de ADN/genética , Epigénesis Genética , Animales , Variación Genética , Masculino , Ratones , Proteómica , Transcriptoma
7.
Elife ; 3: e02626, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25279814

RESUMEN

As exome sequencing gives way to genome sequencing, the need to interpret the function of regulatory DNA becomes increasingly important. To test whether evolutionary conservation of cis-regulatory modules (CRMs) gives insight into human gene regulation, we determined transcription factor (TF) binding locations of four liver-essential TFs in liver tissue from human, macaque, mouse, rat, and dog. Approximately, two thirds of the TF-bound regions fell into CRMs. Less than half of the human CRMs were found as a CRM in the orthologous region of a second species. Shared CRMs were associated with liver pathways and disease loci identified by genome-wide association studies. Recurrent rare human disease causing mutations at the promoters of several blood coagulation and lipid metabolism genes were also identified within CRMs shared in multiple species. This suggests that multi-species analyses of experimentally determined combinatorial TF binding will help identify genomic regions critical for tissue-specific gene control.


Asunto(s)
Hígado/metabolismo , Mamíferos/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Coagulación Sanguínea/genética , Inmunoprecipitación de Cromatina , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Metabolismo de los Lípidos/genética , Masculino , Anotación de Secuencia Molecular , Especificidad de Órganos , Filogenia , Polimorfismo de Nucleótido Simple/genética , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...