Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Total Environ ; 619-620: 1420-1430, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29734618

RESUMEN

Nhecolândia is a vast sub-region of the Pantanal wetland in Brazil with great diversity in surface water chemistry evolving in a sodic alkaline pathway under the influence of evaporation. In this region, >15,000 shallow lakes are likely to contribute an enormous quantity of greenhouse gas to the atmosphere, but the diversity of the biogeochemical scenarios and their variability in time and space is a major challenge to estimate the regional contribution. From 4 selected alkaline lakes, we compiled measurements of the physico-chemical characteristics of water and sediments, gas fluxes in floating chambers, and sedimentation rates to illustrate this diversity. Although these lakes have a similar chemical composition, the results confirm a difference between the black-water and green-water alkaline lakes, corresponding to distinct biogeochemical functioning. This difference does not appear to affect lake sedimentation rates, but is reflected in gas emissions. Black-water lakes are CO2 and CH4 sources, with fairly constant emissions throughout the seasons. Annual carbon dioxide and methane emissions approach 0.86molm-2y-1 and 0.07molm-2y-1, respectively, and no clear trend towards N2O capture or emission was observed. By contrast, green-water lakes are CO2 and N2O sinks but important CH4 sources with fluxes varying significantly throughout the seasons, depending on the magnitude of the phytoplankton bloom. The results highlight important daily and seasonal variations in gas fluxes, and in particular a hot moments for methane emissions, when the O2-supersaturation is reached during the afternoon under extreme bloom and sunny weather conditions, provoking an abrupt O2 purging of the lakes. Taking into account the seasonal variability, annual methane emissions are around 10.2molm-2y-1, i.e., much higher than reported in previous studies for alkaline lakes in Nhecolândia. Carbon dioxide and nitrous oxide consumption is estimated about 1.9molm-2y-1 and 0.73mmolm-2y-1, respectively. However, these balances must be better constrained with systematic and targeted measurements throughout the seasons.

2.
Sci. agric ; 72(2): 147-156, Mar.-Apr. 2015. tab, graf
Artículo en Inglés | VETINDEX | ID: biblio-1497477

RESUMEN

The large volume of sewage sludge (SS) generated with high carbon (C) and nutrient content suggests that its agricultural use may represent an important alternative to soil carbon sequestration and provides a potential substitute for synthetic fertilizers. However, emissions of CH4 and N2O could neutralize benefits with increases in soil C or saving fertilizer production because these gases have a Global Warming Potential (GWP) 25 and 298 times greater than CO2, respectively. Thus, this study aimed to determine C and N content as well as greenhouse gases (GHG) fluxes from soils historically amended with SS. Sewage sludge was applied between 2001 and 2007, and maize (Zea mays L.) was sowed in every year between 2001 and 2009. We evaluated three treatments: Control (mineral fertilizer), 1SS (recommended rate) and 2SS (double rate). Carbon stocks (0-40 cm) were 58.8, 72.5 and 83.1 Mg ha1in the Control, 1SS and 2SS, respectively, whereas N stocks after two years without SS treatment were 4.8, 5.8, and 6.8 Mg ha1, respectively. Soil CO2 flux was highly responsive to soil temperature in SS treatments, and soil water content greatly impacted gas flux in the Control. Soil N2O flux increased under the residual effects of SS, but in 1SS, the flux was similar to that found in moist tropical forests. Soil remained as a CH4sink. Large stores of carbon following historical SS application indicate that its use could be used as a method for carbon sequestration, even under tropical conditions.


Asunto(s)
Gases de Efecto Invernadero , Contaminantes del Suelo , Secuestro de Carbono
3.
Sci. agric. ; 72(2): 147-156, Mar.-Apr. 2015. tab, graf
Artículo en Inglés | VETINDEX | ID: vti-30042

RESUMEN

The large volume of sewage sludge (SS) generated with high carbon (C) and nutrient content suggests that its agricultural use may represent an important alternative to soil carbon sequestration and provides a potential substitute for synthetic fertilizers. However, emissions of CH4 and N2O could neutralize benefits with increases in soil C or saving fertilizer production because these gases have a Global Warming Potential (GWP) 25 and 298 times greater than CO2, respectively. Thus, this study aimed to determine C and N content as well as greenhouse gases (GHG) fluxes from soils historically amended with SS. Sewage sludge was applied between 2001 and 2007, and maize (Zea mays L.) was sowed in every year between 2001 and 2009. We evaluated three treatments: Control (mineral fertilizer), 1SS (recommended rate) and 2SS (double rate). Carbon stocks (0-40 cm) were 58.8, 72.5 and 83.1 Mg ha1in the Control, 1SS and 2SS, respectively, whereas N stocks after two years without SS treatment were 4.8, 5.8, and 6.8 Mg ha1, respectively. Soil CO2 flux was highly responsive to soil temperature in SS treatments, and soil water content greatly impacted gas flux in the Control. Soil N2O flux increased under the residual effects of SS, but in 1SS, the flux was similar to that found in moist tropical forests. Soil remained as a CH4sink. Large stores of carbon following historical SS application indicate that its use could be used as a method for carbon sequestration, even under tropical conditions.(AU)


Asunto(s)
Gases de Efecto Invernadero , Secuestro de Carbono , Contaminantes del Suelo
4.
Biota neotrop. (Online, Ed. port.) ; 11(2): 103-121, Apr.-June 2011. ilus, graf, tab
Artículo en Portugués | LILACS | ID: lil-596867

RESUMEN

Foram avaliadas semelhanças florísticas entre duas fisionomias de Floresta Atlântica na região costeira do Brasil, denominadas Floresta de Restinga e Floresta das Terras Baixas. A hipótese era que, devido à diferença nos processos geomorfológicos, essas duas florestas difeririam em variáveis físico-químicas dos solos, composição florística, biomassa aérea e produção de serapilheira. O trabalho foi conduzido em uma área de 1 ha (100 × 100 m) em cada tipo de floresta, no município de Ubatuba, São Paulo. Foram registrados e medidos todos os indivíduos arbóreos com DAP > 4,8 cm e coletadas amostras de solo e serapilheira. As análises de agrupamento e de ordenação indicaram que os solos e principalmente a flora distribuem-se como grupos bem definidos, concordando com a hipótese de distinção entre as duas florestas. A diversidade de espécies foi maior (p < 0.0001) na Floresta de Terras Baixas (H' = 4,00 nats.indivíduo-1) do que na Restinga (H' = 3,38 nats.indivíduo-1). No entanto, a produção de serapilheira e a biomassa não diferiram (p > 0,05) entre as duas florestas. Esse aparente paradoxo poderia ser explicado supondo-se que, uma vez que espécies diferentes consigam se estabelecer na Restinga ou nas Terras Baixas e encontrem um espectro favorável de condições e recursos, elas tenderiam a persistir e se desenvolver naquele local; nesse caso, embora as condições edáficas difiram entre as duas áreas, cada espécie responderia de modo particular a essas variações, de modo que as florestas poderiam atingir valores semelhantes de biomassa e produção de serapilheira. É provável que o filtro ambiental condicionado pelos solos esteja sendo importante para a forte separação florística entre essas duas florestas.


It was evaluated the floristic similarity between two Atlantic Rainforest physiognomies in Brazilian coast area, herein called Restinga and Lowland forests. The hypothesis was that, due the differences in geomorphologic processes, these forests would differ on soil physical and chemical properties, floristic composition, live above-ground biomass and litterfall production. It was sampled 1 ha (100 × 100 m) for each site located in Ubatuba, São Paulo state, SE Brazil. Within each hectare it was recorded trees with DBH > 4.8 cm in all 10 × 10 m contiguous plots, and collected soil and litterfall samples. The cluster and ordination analyses indicated the two communities as distinct groups considering soil and floristic composition, agreeing with the initial hypothesis. Species diversity was higher (p < 0.0001) in the Lowland forest (H' = 4.00 nats.individual-1) than in the Restinga (H' = 3.38 nats.individual-1). However, litterfall production and biomass did not differ (p > 0.05) between the two forests. This apparent paradox could be explained assuming that, since different species establish themselves in the Restinga or Lowland forests and find a favorable spectrum of conditions and resources, they would tend to persist and to develop in that place; even so the edaphic conditions differ between the Restinga and Lowland forests, each species could respond in a particular way to these variations, and then both forests could reach similar values of biomass and litterfall production. It is probable that the environmental filter conditioned by soils has being important for the strong floristic segregation between these two forests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA