Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36678639

RESUMEN

Skin has a preventive role against any damage raised by harmful microorganisms and physical and chemical assaults from the external environment that could affect the body's internal organs. Dermis represents the main section of the skin, and its contribution to skin physiology is critical due to its diverse cellularity, vasculature, and release of molecular mediators involved in the extracellular matrix maintenance and modulation of the immune response. Skin structure and complexity limit the transport of substances, promoting the study of different types of nanoparticles that penetrate the skin layers under different mechanisms intended for skin illness treatments and dermo-cosmetic applications. In this work, we present a detailed morphological description of the dermis in terms of its structures and resident cells. Furthermore, we analyze the role of the dermis in regulating skin homeostasis and its alterations in pathophysiological conditions, highlighting its potential as a therapeutic target. Additionally, we describe the use of nanoparticles for skin illness treatments focused on dermis release and promote the use of metal-organic frameworks (MOFs) as an integrative strategy for skin treatments.

2.
Chemistry ; 27(36): 9429-9438, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-33882160

RESUMEN

Instilling segregated cationic and lipophilic domains with an angular disposition in a trehalose-based trifaceted macrocyclic scaffold allows engineering patchy molecular nanoparticles leveraging directional interactions that emulate those controlling self-assembling processes in viral capsids. The resulting trilobular amphiphilic derivatives, featuring a Mickey Mouse architecture, can electrostatically interact with plasmid DNA (pDNA) and further engage in hydrophobic contacts to promote condensation into transfectious nanocomplexes. Notably, the topology and internal structure of the cyclooligosaccharide/pDNA co-assemblies can be molded by fine-tuning the valency and characteristics of the cationic and lipophilic patches, which strongly impacts the transfection efficacy in vitro and in vivo. Outstanding organ selectivities can then be programmed with no need of incorporating a biorecognizable motif in the formulation. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes by making cyclooligosaccharide patchiness the focus.


Asunto(s)
Ciclodextrinas , Nanopartículas , ADN , Técnicas de Transferencia de Gen , Plásmidos/genética , Transfección
3.
Front Chem ; 7: 72, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873399

RESUMEN

The presence of a doubly-linked naphthylene clip at the O-2I and O-3II positions in the secondary ring of ß-cyclodextrin (ßCD) derivatives promoted their self-assembly into head-to-head supramolecular dimers in which the aromatic modules act either as cavity extension walls (if the naphthalene moiety is 1,8-disubstituted) or as folding screens that separate the individual ßCD units (if 2,3-disubstituted). Dimer architecture is governed by the conformational properties of the monomer constituents, as determined by NMR, fluorescence, circular dichroism, and computational techniques. In a second supramolecular organization level, the topology of the assembly directs host-guest interactions and, reciprocally, guest inclusion impacts the stability of the supramolecular edifice. Thus, inclusion of adamantane carboxylate, a well-known ßCD cavity-fitting guest, was found to either preserve the dimeric arrangement, leading to multicomponent species, or elicit dimer disruption. The ensemble of results highlights the potential of the approach to program self-organization and external stimuli responsiveness of CD devices in a controlled manner while keeping full diastereomeric purity.

4.
J Org Chem ; 83(10): 5588-5597, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29683327

RESUMEN

The topology of ß-cyclodextrin can be molded, from toroidal to ovoid basket-shaped, by the installation of an o- or m-xylylene moiety connecting two consecutive d-glucopyranosyl units through the secondary O-2(I) and O-3(II) positions. This strategy can be exploited advantageously to precast the cavity for preferential inclusion of globular or planar guests as well as to privilege dimeric or monomeric species in water solution.

5.
Chemistry ; 21(34): 12093-104, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26184887

RESUMEN

Only a few examples of monodisperse molecular entities that can compact exogenous nucleic acids into nanocomplexes, protect the cargo from the biological environment, facilitate cell internalization, and promote safe transfection have been reported up to date. Although these species open new venues for fundamental studies on the structural requirements that govern the intervening processes and their application in nonviral gene-vector design, the synthesis of these moieties generally requires a relatively sophisticated chemistry, which hampers further development in gene therapy. Herein, we report an original strategy for the reversible complexation and delivery of DNA based on the supramolecular preorganization of a ß-cyclodextrin-scaffolded polycationic cluster facilitated by bisadamantane guests. The resulting gemini-type, dual-cluster supramolecules can then undergo DNA-templated self-assembly at neutral pH value by bridging parallel DNA oligonucleotide fragments. This hierarchical DNA condensation mechanism affords transfectious nanoparticles with buffering capabilities, thus facilitating endosomal escape following cell internalization. Protonation also destabilizes the supramolecular dimers and consequently the whole supramolecular edifice, thus assisting DNA release. Our advanced hypotheses are supported by isothermal titration calorimetry, NMR and circular dichroism spectroscopic analysis, gel electrophoresis, dynamic light scattering, TEM, molecular mechanics, molecular dynamics, and transfection studies conducted in vitro and in vivo.


Asunto(s)
ADN/química , Nanopartículas/química , Oligonucleótidos/química , Fragmentos de Péptidos/química , Poliaminas/química , beta-Ciclodextrinas/química , Línea Celular , ADN/metabolismo , Técnicas de Transferencia de Gen , Terapia Genética , Humanos , Concentración de Iones de Hidrógeno , Oligonucleótidos/metabolismo , Fragmentos de Péptidos/metabolismo , Polielectrolitos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...