Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
medRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38343865

RESUMEN

Epidemiological studies suggest that heterogeneity in influenza vaccine antibody response is associated with host factors, including pre-vaccination immune status, age, gender, and vaccination history. However, the pattern of reported associations varies between studies. To better understand the underlying influences on antibody responses, we combined host factors and vaccine-induced in-host antibody kinetics from a cohort study conducted across multiple seasons with a unified analysis framework. We developed a flexible individual-level Bayesian model to estimate associations and interactions between host factors, including pre-vaccine HAI titre, age, sex, vaccination history and study setting, and vaccine-induced HAI titre antibody boosting and waning. We applied the model to derive population-level and individual effects of post-vaccine antibody kinetics for vaccinating and circulating strains for A(H1N1) and A(H3N2) influenza subtypes. We found that post-vaccine HAI titre dynamics were significantly influenced by pre-vaccination HAI titre and vaccination history and that lower pre-vaccination HAI titre results in longer durations of seroprotection (HAI titre equal to 1:40 or higher). Consequently, for A(H1N1), our inference finds that the expected duration of seroprotection post-vaccination was 171 (95% Posterior Predictive Interval[PPI] 128-220) and 159 (95% PPI 120-200) days longer for those who are infrequently vaccinated (<2 vaccines in last five years) compared to those who are frequently vaccinated (2 or more vaccines in the last five years) at pre-vaccination HAI titre values of 1:10 and 1:20 respectively. In addition, we found significant differences in the empirical distributions that describe the individual-level duration of seroprotection for A(H1N1) circulating strains. In future, studies that rely on serological endpoints should include the impact of pre-vaccine HAI titre and prior vaccination status on seropositivity and seroconversion estimates, as these significantly influence an individual's post-vaccination antibody kinetics.

2.
Vaccine ; 41(48): 7192-7200, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37903679

RESUMEN

Both vector and mRNA vaccines were an important part of the response to the COVID-19 pandemic and may be required in future outbreaks and pandemics. The aim of this study was to validate whether immunogenicity differs for adenoviral vectored (AdV) versus mRNA vaccines against SARS-CoV-2, and to investigate how anti-vector immunity and B cell dynamics modulate immunogenicity. We enrolled SARS-CoV-2 infection-naïve health care workers who had received two doses of either AdV AZD1222 (n = 184) or mRNA BNT162b2 vaccine (n = 274) between April and October 2021. Blood was collected at least once, 10-48 days after vaccine dose 2 for antibody and B cell analyses. Median ages were 42 and 39 years, for AdV and mRNA vaccinees, respectively. Surrogate virus neutralization test (sVNT) and spike binding antibody titres were a median of 4.2 and 2.2 times lower, respectively, for AdV compared to mRNA vaccinees (p < 0.001). Median percentages of memory B cells that recognized fluorescent-tagged spike and RBD were 2.9 and 8.3 times lower, respectively for AdV compared to mRNA vaccinees. Titres of IgG reactive with human adenovirus type 5 hexon protein rose a median of 2.2-fold after AdV vaccination but were not correlated with anti-spike antibody titres. Together the results show that mRNA induced substantially more sVNT antibody than AdV vaccine, which reflected greater B cell expansion and targeting of the RBD rather than an attenuating effect of anti-vector antibodies. ClinicalTrials.gov Identifier: NCT05110911.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Vacunas contra la COVID-19 , Pandemias/prevención & control , Vacuna BNT162 , ChAdOx1 nCoV-19 , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos , Anticuerpos Antivirales
3.
medRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333329

RESUMEN

Both vector and mRNA vaccines were an important part of the response to the COVID-19 pandemic and may be required in future outbreaks and pandemics. However, adenoviral vectored (AdV) vaccines may be less immunogenic than mRNA vaccines against SARS-CoV-2. We assessed anti-spike and anti-vector immunity among infection-naïve Health Care Workers (HCW) following two doses of AdV (AZD1222) versus mRNA (BNT162b2) vaccine. 183 AdV and 274 mRNA vaccinees enrolled between April and October 2021. Median ages were 42 and 39 years, respectively. Blood was collected at least once, 10-48 days after vaccine dose 2. Surrogate virus neutralization test (sVNT) and spike binding antibody titres were a median of 4.2 and 2.2 times lower, respectively, for AdV compared to mRNA vaccinees (p<0.001). Median percentages of memory B cells that recognized fluorescent-tagged spike and RBD were 2.9 and 8.3 times lower, respectively for AdV compared to mRNA vaccinees. Titres of IgG reactive with human Adenovirus type 5 hexon protein rose a median of 2.2-fold after AdV vaccination but were not correlated with anti-spike antibody titres. Together the results show that mRNA induced substantially more sVNT antibody than AdV vaccine due to greater B cell expansion and targeting of the RBD. Pre-existing AdV vector cross-reactive antibodies were boosted following AdV vaccination but had no detectable effect on immunogenicity.

4.
Front Immunol ; 14: 1129765, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926342

RESUMEN

Introduction: External Quality Assessment (EQA) schemes are designed to provide a snapshot of laboratory proficiency, identifying issues and providing feedback to improve laboratory performance and inter-laboratory agreement in testing. Currently there are no international EQA schemes for seasonal influenza serology testing. Here we present a feasibility study for conducting an EQA scheme for influenza serology methods. Methods: We invited participant laboratories from industry, contract research organizations (CROs), academia and public health institutions who regularly conduct hemagglutination inhibition (HAI) and microneutralization (MN) assays and have an interest in serology standardization. In total 16 laboratories returned data including 19 data sets for HAI assays and 9 data sets for MN assays. Results: Within run analysis demonstrated good laboratory performance for HAI, with intrinsically higher levels of intra-assay variation for MN assays. Between run analysis showed laboratory and strain specific issues, particularly with B strains for HAI, whilst MN testing was consistently good across labs and strains. Inter-laboratory variability was higher for MN assays than HAI, however both assays showed a significant reduction in inter-laboratory variation when a human sera pool is used as a standard for normalization. Discussion: This study has received positive feedback from participants, highlighting the benefit such an EQA scheme would have on improving laboratory performance, reducing inter laboratory variation and raising awareness of both harmonized protocol use and the benefit of biological standards for seasonal influenza serology testing.


Asunto(s)
Gripe Humana , Humanos , Hemaglutinación , Laboratorios , Estudios de Factibilidad , Estaciones del Año
5.
Viruses ; 14(3)2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35336877

RESUMEN

Prior vaccination can alternately enhance or attenuate influenza vaccine immunogenicity and effectiveness. Analogously, we found that vaccine immunogenicity was enhanced by prior A(H3N2) virus infection among participants of the Ha Nam Cohort, Viet Nam, but was attenuated by prior vaccination among Australian Health Care Workers (HCWs) vaccinated in the same year. Here, we combined these studies to directly compare antibody titers against 35 A(H3N2) viruses spanning 1968-2018. Participants received licensed inactivated vaccines containing A/HongKong/4801/2014 (H3N2). The analysis was limited to participants aged 18-65 Y, and compared those exposed to A(H3N2) viruses circulating since 2009 by infection (Ha Nam) or vaccination (HCWs) to a reference group who had no recent A(H3N2) infection or vaccination (Ha Nam). Antibody responses were compared by fitting titer/titer-rise landscapes across strains, and by estimating titer ratios to the reference group of 2009-2018 viruses. Pre-vaccination, titers were lowest against 2009-2014 viruses among the reference (no recent exposure) group. Post-vaccination, titers were, on average, two-fold higher among participants with prior infection and two-fold lower among participants with 3-5 prior vaccinations compared to the reference group. Titer rise was negligible among participants with 3-5 prior vaccinations, poor among participants with 1-2 prior vaccinations, and equivalent or better among those with prior infection compared to the reference group. The enhancing effect of prior infection versus the incrementally attenuating effect of prior vaccinations suggests that these exposures may alternately promote and constrain the generation of memory that can be recalled by a new vaccine strain.


Asunto(s)
Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Anticuerpos Antivirales , Australia , Humanos , Inmunogenicidad Vacunal , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/prevención & control , Vacunación , Vacunas de Productos Inactivados
6.
Nat Med ; 28(2): 363-372, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35177857

RESUMEN

Studies of successive vaccination suggest that immunological memory against past influenza viruses may limit responses to vaccines containing current strains. The impact of memory induced by prior infection is rarely considered and is difficult to ascertain, because infections are often subclinical. This study investigated influenza vaccination among adults from the Ha Nam cohort (Vietnam), who were purposefully selected to include 72 with and 28 without documented influenza A(H3N2) infection during the preceding 9 years (Australian New Zealand Clinical Trials Registry 12621000110886). The primary outcome was the effect of prior influenza A(H3N2) infection on hemagglutinin-inhibiting antibody responses induced by a locally available influenza vaccine administered in November 2016. Baseline and postvaccination sera were titrated against 40 influenza A(H3N2) strains spanning 1968-2018. At each time point (baseline, day 14 and day 280), geometric mean antibody titers against 2008-2018 strains were higher among participants with recent infection (34 (29-40), 187 (154-227) and 86 (72-103)) than among participants without recent infection (19 (17-22), 91 (64-130) and 38 (30-49)). On days 14 and 280, mean titer rises against 2014-2018 strains were 6.1-fold (5.0- to 7.4-fold) and 2.6-fold (2.2- to 3.1-fold) for participants with recent infection versus 4.8-fold (3.5- to 6.7-fold) and 1.9-fold (1.5- to 2.3-fold) for those without. One of 72 vaccinees with recent infection versus 4 of 28 without developed symptomatic A(H3N2) infection in the season after vaccination (P = 0.021). The range of A(H3N2) viruses recognized by vaccine-induced antibodies was associated with the prior infection strain. These results suggest that recall of immunological memory induced by prior infection enhances antibody responses to inactivated influenza vaccine and is important to attain protective antibody titers.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Adulto , Anticuerpos Antivirales , Formación de Anticuerpos , Australia , Pruebas de Inhibición de Hemaglutinación , Humanos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/prevención & control , Vacunación , Vacunas de Productos Inactivados
7.
Clin Infect Dis ; 75(1): e357-e360, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35026841

RESUMEN

A key aim of serosurveillance during the coronavirus disease 2019 (COVID-19) pandemic has been to estimate the prevalence of prior infection, by correcting crude seroprevalence against estimated test performance for polymerase chain reaction (PCR)-confirmed COVID-19. We show that poor generalizability of sensitivity estimates to some target populations may lead to substantial underestimation of case numbers.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Prueba de COVID-19 , Humanos , Pandemias , Estudios Seroepidemiológicos
8.
J Infect Dis ; 226(1): 59-69, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32484513

RESUMEN

BACKGROUND: The extent to which influenza recurrence depends upon waning immunity from prior infection is undefined. We used antibody titers of Ha-Nam cohort participants to estimate protection curves and decay trajectories. METHODS: Households (270) participated in influenza-like-illness (ILI) surveillance and provided blood at intervals spanning laboratory-confirmed virus transmission. Sera were tested in hemagglutination inhibition assay. Infection was defined as influenza virus-positive ILI and/or seroconversion. Median protective titers were estimated using scaled-logistic regression to model pretransmission titer against infection status in that season, limiting analysis to households with infection(s). Titers were modelled against month since infection using mixed-effects linear regression to estimate decay and when titers fell below protection thresholds. RESULTS: From December 2008-2012, 295 and 314 participants were infected with H1N1pdm09-like and A/Perth/16/09-like (H3N2Pe09) viruses, respectively. The proportion protected rose more steeply with titer for H1N1pdm09 than for H3N2Pe09, and estimated 50% protection titers were 19.6 and 37.3, respectively. Postinfection titers started higher against H3N2Pe09 but decayed more steeply than against H1N1pdm09. Seroprotection was estimated to be sustained against H1N1pdm09 but to wane by 8-months for H3N2Pe09. CONCLUSIONS: Estimates indicate that infection induces durable seroprotection against H1N1pdm09 but not H3N2Pe09, which could in part account for the younger age of A(H1N1) versus A(H3N2) cases.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/epidemiología , Anticuerpos Antivirales , Subtipo H3N2 del Virus de la Influenza A , Pruebas de Inhibición de Hemaglutinación
9.
Vaccine ; 39(24): 3270-3278, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33985853

RESUMEN

BACKGROUND: Epidemiological studies suggest that influenza vaccine effectiveness decreases with repeated administration. We examined antibody responses to influenza vaccination among healthcare workers (HCWs) by prior vaccination history and determined the incidence of influenza infection. METHODS: HCWs were vaccinated with the 2016 Southern Hemisphere quadrivalent influenza vaccine. Serum samples were collected pre-vaccination, 21-28 days and 7 months post-vaccination. Influenza antibody titres were measured at each time-point using the haemagglutination inhibition (HI) assay. Immunogenicity was compared by prior vaccination history. RESULTS: A total of 157 HCWs completed the study. The majority were frequently vaccinated, with only 5 reporting no prior vaccinations since 2011. Rises in titres for all vaccine strains among vaccine-naïve HCWs were significantly greater than rises observed for HCWs who received between 1 and 5 prior vaccinations (p < 0.001, respectively). Post-vaccination GMTs against influenza A but not B strains decreased as the number of prior vaccinations increased from 1 to 5. There was a significant decline in GMTs post-season for both B lineages. Sixty five (41%) HCWs reported at least one influenza-like illness episode, with 6 (4%) identified as influenza positive. CONCLUSIONS: Varying serological responses to influenza vaccination were observed among HCWs by prior vaccination history, with vaccine-naïve HCWs demonstrating greater post-vaccination responses against A(H3N2).


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Anticuerpos Antivirales , Formación de Anticuerpos , Australia/epidemiología , Personal de Salud , Humanos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/prevención & control , Vacunación
10.
Bone Marrow Transplant ; 55(4): 773-779, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31659236

RESUMEN

Influenza vaccination is recommended for children following allogeneic haematopoietic stem cell transplant (HSCT), however there is limited evidence regarding its benefit. A prospective multicentre study was conducted to evaluate the immunogenicity of the inactivated influenza vaccine in children who have undergone HSCT compared with healthy age-matched controls. Participants were vaccinated between 2013 and 2016 according to Australian guidelines. Influenza-specific hemagglutinin inhibition antibody titres were performed prior to each vaccination and 4 weeks following the final vaccination. A nasopharyngeal aspirate for influenza was performed on participants that developed influenza-like illness. There were 86 children recruited; 43 who had undergone HSCT and 43 controls. For the HSCT group, seroprotection and seroconversion rates were 81.4% and 60.5% for H3N2, 41.9% and 32.6% for H1N1, and 44.2% and 39.5% for B strain respectively. There was a significant geometric mean fold increase to the H3N2 (GMFI 5.80, 95% CI 3.68-9.14, p < 0.001) and B (GMFI 3.44, 95% CI 2.36-5.00, p = 0.048) strains. Serological response was superior in age-matched controls to all vaccine strains. There were no serious adverse events following vaccination. For children who underwent HSCT, incidence of laboratory-proven influenza infection was 2.3%. Overall, this study provides evidence to support annual inactivated influenza vaccine administration to children following HSCT.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Anticuerpos Antivirales , Australia , Niño , Humanos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/prevención & control , Estudios Prospectivos , Vacunas de Productos Inactivados
12.
Nat Microbiol ; 4(12): 2031-2032, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31754271
13.
Infect Genet Evol ; 64: 95-104, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29929009

RESUMEN

Live attenuated influenza vaccines (LAIVs) are promising tools for the induction of broad protection from influenza due to their ability to stimulate cross-reactive T cells against influenza pathogens. One of the major targets for cytotoxic T-cell immunity is viral nucleoprotein (NP), which is relatively conserved among antigenically distant influenza viruses. Nevertheless, a diversity of epitope composition has been found in the NP protein of different lineages of influenza A viruses. The H2N2 master donor virus which is currently used as a backbone for the LAIV and donor of the six genomic segments encoding the internal proteins, A/Leningrad/134/17/57 (MDV Len/17), was isolated 60 years ago. As such, NP-specific T-cell immunity induced upon vaccination with classical LAIVs with a 6:2 genome composition containing this older NP might be suboptimal against currently circulating influenza viruses. In this study, a panel of H3N2 LAIV candidates with wild-type NP genes derived from circulating viruses were generated by reverse genetics (5:3 genome composition). These viruses displayed the cold adaptation and temperature sensitivity phenotypes of MDV Len/17 in vitro. LAIVs with both 6:2 and 5:3 genome compositions were attenuated and replicated to a similar extent in the upper respiratory tract of ferrets. LAIVs were immunogenic as high neutralizing and hemagglutination inhibition serum antibody titers were detected 21 days after infection. All vaccinated animals were protected against infection with heterologous H3N2 influenza A viruses. Thus, LAIV with a 5:3 genome composition is safe, immunogenic and can induce cross-protective immunity.


Asunto(s)
Enfermedades de los Animales/prevención & control , Inmunogenicidad Vacunal , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Nucleoproteínas/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Vacunas Atenuadas/inmunología , Enfermedades de los Animales/inmunología , Enfermedades de los Animales/virología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Femenino , Hurones , Genoma Viral , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/genética , Masculino , Pruebas de Neutralización , Nucleoproteínas/genética , Vacunación , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/genética
14.
J Infect Dis ; 218(3): 406-417, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29746640

RESUMEN

Epidemiological studies have observed that the seasonal peak incidence of influenza virus infection is sometimes separate from the peak incidence of human respiratory syncytial virus (hRSV) infection, with the peak incidence of hRSV infection delayed. This is proposed to be due to viral interference, whereby infection with one virus prevents or delays infection with a different virus. We investigated viral interference between hRSV and 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) in the ferret model. Infection with A(H1N1)pdm09 prevented subsequent infection with hRSV. Infection with hRSV reduced morbidity attributed to infection with A(H1N1)pdm09 but not infection, even when an increased inoculum dose of hRSV was used. Notably, infection with A(H1N1)pdm09 induced higher levels of proinflammatory cytokines, chemokines, and immune mediators in the ferret than hRSV. Minimal cross-reactive serological responses or interferon γ-expressing cells were induced by either virus ≥14 days after infection. These data indicate that antigen-independent mechanisms may drive viral interference between unrelated respiratory viruses that can limit subsequent infection or disease.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Infecciones por Orthomyxoviridae/virología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/crecimiento & desarrollo , Interferencia Viral , Animales , Anticuerpos Antivirales , Modelos Animales de Enfermedad , Hurones , Inmunidad Celular , Inmunidad Humoral , Interferón gamma/análisis , Leucocitos Mononucleares/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Virus Sincitial Respiratorio/patología , Análisis de Supervivencia
15.
J Infect Dis ; 217(4): 548-559, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29325138

RESUMEN

Background: Two influenza B virus lineages, B/Victoria and B/Yamagata, cocirculate in the human population. While the lineages are serologically distinct, cross-reactive responses to both lineages have been detected. Viral interference describes the situation whereby infection with one virus limits infection and replication of a second virus. We investigated the potential for viral interference between the influenza B virus lineages. Methods: Ferrets were infected and then challenged 3, 10, or 28 days later with pairs of influenza B/Victoria and B/Yamagata viruses. Results: Viral interference occurred at challenge intervals of 3 and 10 days and occasionally at 28 days. At the longer interval, shedding of challenge virus was reduced, and this correlated with cross-reactive interferon γ responses from lymph nodes from virus-infected animals. Viruses from both lineages could prevent or significantly limit subsequent infection with a virus from the other lineage. Coinfections were rare, indicating the potential for reassortment between lineages is limited. Conclusions: These data suggest that innate and cross-reactive immunity mediate viral interference and that this may contribute to the dominance of a specific influenza B virus lineage in any given influenza season. Furthermore, infection with one influenza B virus lineage may be beneficial in protecting against subsequent infection with either influenza B virus lineage.


Asunto(s)
Protección Cruzada , Virus de la Influenza B/inmunología , Virus de la Influenza B/fisiología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Interferencia Viral , Animales , Reacciones Cruzadas , Modelos Animales de Enfermedad , Hurones , Inmunidad Innata
16.
J Virol ; 92(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29187546

RESUMEN

Small-animal models have been used to obtain many insights regarding the pathogenesis and immune responses induced following infection with human respiratory syncytial virus (hRSV). Among those described to date, infections in cotton rats, mice, guinea pigs, chinchillas, and Syrian hamsters with hRSV strains Long and/or A2 have been well characterized, although clinical isolates have also been examined. Ferrets are also susceptible to hRSV infection, but the pathogenesis and immune responses elicited following infection have not been well characterized. Here, we describe the infection of adult ferrets with hRSV Long or A2 via the intranasal route and characterized virus replication, as well as cytokine induction, in the upper and lower airways. Virus replication and cytokine induction during the acute phase of infection (days 0 to 15 postinfection) were similar between the two strains, and both elicited high levels of F glycoprotein-specific binding and neutralizing antibodies following virus clearance (days 16 to 22 postinfection). Importantly, we demonstrate transmission from experimentally infected donor ferrets to cohoused naive recipients and have characterized virus replication and cytokine induction in the upper airways of infected contact animals. Together, these studies provide a direct comparison of the pathogenesis of hRSV Long and A2 in ferrets and highlight the potential of this animal model to study serological responses and examine interventions that limit transmission of hRSV.IMPORTANCE Ferrets have been widely used to study pathogenesis, immunity, and transmission following human influenza virus infections; however, far less is known regarding the utility of the ferret model to study hRSV infections. Following intranasal infection of adult ferrets with the well-characterized Long or A2 strain of hRSV, we report virus replication and cytokine induction in the upper and lower airways, as well as the development of virus-specific humoral responses. Importantly, we demonstrate transmission of hRSV from experimentally infected donor ferrets to cohoused naive recipients. Together, these findings significantly enhance our understanding of the utility of the ferret as a small-animal model to investigate aspects of hRSV pathogenesis and immunity.


Asunto(s)
Modelos Animales de Enfermedad , Inmunidad Humoral/inmunología , Infecciones por Virus Sincitial Respiratorio/transmisión , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/patogenicidad , Infecciones del Sistema Respiratorio/virología , Animales , Hurones , Células HeLa , Humanos , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/patología , Virus Sincitial Respiratorio Humano/inmunología , Infecciones del Sistema Respiratorio/inmunología , Carga Viral , Replicación Viral
17.
Vaccine ; 35(19): 2558-2568, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28385605

RESUMEN

OBJECTIVE: To compare the antibody response to influenza between health care workers (HCWs) who have received multiple vaccinations (high vaccination group) and those who have received fewer vaccinations (low vaccination group). DESIGN: Prospective serosurvey. SETTING: Tertiary referral hospital. PARTICIPANTS: Healthcare workers. METHODS: Healthcare workers were vaccinated with the 2015 southern hemisphere trivalent influenza vaccine. Influenza antibody titres were measured pre-vaccination, 21-28days post-vaccination and 6months post-vaccination. Antibody titres were measured using the haemagglutination inhibition assay. Levels of seropositivity and estimated geometric mean titres were calculated. RESULTS: Of the 202 HCWs enrolled, 182 completed the study (143 high vaccination and 39 low vaccination). Both vaccination groups demonstrated increases in post-vaccination geometric mean titres, with greater gains in the low vaccination group. Seropositivity remained high in both high and low vaccination groups post-vaccination. The highest fold rise was observed among HCWs in the low vaccination group against the H3N2 component of the vaccine. CONCLUSIONS: Both high and low vaccination groups in our study demonstrated protective antibody titres post-vaccination. The findings from the current study are suggestive of decreased serological response among highly vaccinated HCWs. More studies with larger sample sizes and a greater number of people in the vaccine-naïve and once-vaccinated groups are required to confirm or refute these findings before making any policy changes.


Asunto(s)
Anticuerpos Antivirales/sangre , Personal de Salud , Inmunización Secundaria , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Adulto , Anciano , Formación de Anticuerpos , Femenino , Humanos , Vacunas contra la Influenza/administración & dosificación , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Centros de Atención Terciaria , Resultado del Tratamiento , Adulto Joven
18.
J Virol ; 90(12): 5724-5734, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27053553

RESUMEN

UNLABELLED: This study seeks to assess the ability of seasonal trivalent inactivated influenza vaccine (TIV) to induce nonneutralizing antibodies (Abs) with Fc-mediated functions in HIV-uninfected and HIV-infected subjects. Functional influenza-specific Ab responses were studied in 30 HIV-negative and 27 HIV-positive subjects immunized against seasonal influenza. All 57 subjects received the 2015 TIV. Fc-mediated antihemagglutinin (anti-HA) Ab activity was measured in plasma before and 4 weeks after vaccination using Fc-receptor-binding assays, NK cell activation assays, and phagocytosis assays. At baseline, the HIV-positive group had detectable but reduced functional Ab responses to both vaccine and nonvaccine influenza antigens. TIV enhanced Fc-mediated Ab responses in both HIV-positive and HIV-negative groups. A larger rise was generally observed in the HIV-positive group, such that there was no difference in functional Ab responses between the two groups after vaccination. The 2015 TIV enhanced functional influenza-specific Ab responses in both HIV-negative and HIV-positive subjects to a range of influenza HA proteins. The increase in functional Ab responses in the HIV-positive group supports recommendations to immunize this at-risk group. IMPORTANCE: Infection with HIV is associated with increasing disease severity following influenza infections, and annual influenza vaccinations are recommended for this target group. However, HIV-infected individuals respond relatively poorly to vaccination compared to healthy individuals, particularly if immunodeficient. There is therefore a need to increase our understanding of immunity to influenza in the context of underlying HIV infection. While antibodies can mediate direct virus neutralization, interactions with cellular Fc receptors may be important for anti-influenza immunity in vivo by facilitating antibody-dependent cellular cytotoxicity (ADCC) and/or antibody-dependent phagocytosis (ADP). The ability of seasonal influenza vaccines to induce antibody responses with potent Fc-mediated antiviral activity is currently unclear. Probing the ADCC and ADP responses to influenza vaccination has provided important new information in the quest to improve immunity to influenza.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por VIH/inmunología , Vacunas contra la Influenza/inmunología , Receptores Fc/inmunología , Adulto , Anticuerpos Antivirales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Hemaglutininas/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Masculino , Persona de Mediana Edad , Fagocitosis , Vacunación , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Adulto Joven
19.
Virology ; 494: 143-57, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27110707

RESUMEN

Many insights regarding the pathogenesis of human influenza A virus (IAV) infections have come from studies in mice and ferrets. Surfactant protein (SP)-D is the major neutralizing inhibitor of IAV in mouse airway fluids and SP-D-resistant IAV mutants show enhanced virus replication and virulence in mice. Herein, we demonstrate that sialylated glycoproteins, rather than SP-D, represent the major neutralizing inhibitors against H3 subtype viruses in airway fluids from naïve ferrets. Moreover, while resistance to neutralizing inhibitors is a critical factor in modulating virus replication and disease in the mouse model, it does not appear to be so in the ferret model, as H3 mutants resistant to either SP-D or sialylated glycoproteins in ferret airway fluids did not show enhanced virulence in ferrets. These data have important implications for our understanding of pathogenesis and immunity to human IAV infections in these two widely used animal models of infection.


Asunto(s)
Interacciones Huésped-Patógeno , Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Animales , Femenino , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Virus de la Influenza A/clasificación , Virus de la Influenza A/patogenicidad , Masculino , Ratones , Mutación , Pruebas de Neutralización , Infecciones por Orthomyxoviridae/patología , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Sistema Respiratorio/inmunología , Sistema Respiratorio/metabolismo , Sistema Respiratorio/patología , Sistema Respiratorio/virología , Virulencia/genética
20.
PLoS Comput Biol ; 11(8): e1004334, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26284917

RESUMEN

Influenza is an infectious disease that primarily attacks the respiratory system. Innate immunity provides both a very early defense to influenza virus invasion and an effective control of viral growth. Previous modelling studies of virus-innate immune response interactions have focused on infection with a single virus and, while improving our understanding of viral and immune dynamics, have been unable to effectively evaluate the relative feasibility of different hypothesised mechanisms of antiviral immunity. In recent experiments, we have applied consecutive exposures to different virus strains in a ferret model, and demonstrated that viruses differed in their ability to induce a state of temporary immunity or viral interference capable of modifying the infection kinetics of the subsequent exposure. These results imply that virus-induced early immune responses may be responsible for the observed viral hierarchy. Here we introduce and analyse a family of within-host models of re-infection viral kinetics which allow for different viruses to stimulate the innate immune response to different degrees. The proposed models differ in their hypothesised mechanisms of action of the non-specific innate immune response. We compare these alternative models in terms of their abilities to reproduce the re-exposure data. Our results show that 1) a model with viral control mediated solely by a virus-resistant state, as commonly considered in the literature, is not able to reproduce the observed viral hierarchy; 2) the synchronised and desynchronised behaviour of consecutive virus infections is highly dependent upon the interval between primary virus and challenge virus exposures and is consistent with virus-dependent stimulation of the innate immune response. Our study provides the first mechanistic explanation for the recently observed influenza viral hierarchies and demonstrates the importance of understanding the host response to multi-strain viral infections. Re-exposure experiments provide a new paradigm in which to study the immune response to influenza and its role in viral control.


Asunto(s)
Inmunidad Innata/inmunología , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Animales , Biología Computacional , Modelos Animales de Enfermedad , Hurones , Interacciones Huésped-Patógeno/inmunología , Humanos , Gripe Humana/inmunología , Gripe Humana/virología , Modelos Inmunológicos , Orthomyxoviridae/inmunología , Orthomyxoviridae/patogenicidad , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...