Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 9924, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32555511

RESUMEN

Sphingosine-1-phosphate (S1P) is a bioactive sphingo-lipid with a broad range of activities coupled to its role in G-protein coupled receptor signalling. Monitoring of both intra and extra cellular levels of this lipid is challenging due to its low abundance and lack of robust affinity assays or sensors. We here report on fluorescent sensory core-shell molecularly imprinted polymer (MIP) particles responsive to near physiologically relevant levels of S1P and the S1P receptor modulator fingolimod phosphate (FP) in spiked human serum samples. Imprinting was achieved using the tetrabutylammonium (TBA) salt of FP or phosphatidic acid (DPPA·Na) as templates in combination with a polymerizable nitrobenzoxadiazole (NBD)-urea monomer with the dual role of capturing the phospho-anion and signalling its presence. The monomers were grafted from ca 300 nm RAFT-modified silica core particles using ethyleneglycol dimethacrylate (EGDMA) as crosslinker resulting in 10-20 nm thick shells displaying selective fluorescence response to the targeted lipids S1P and DPPA in aqueous buffered media. Potential use of the sensory particles for monitoring S1P in serum was demonstrated on spiked serum samples, proving a linear range of 18-60 µM and a detection limit of 5.6 µM, a value in the same range as the plasma concentration of the biomarker.


Asunto(s)
Clorhidrato de Fingolimod/sangre , Fluorescencia , Lisofosfolípidos/sangre , Impresión Molecular/métodos , Nanopartículas/química , Polímeros/química , Dióxido de Silicio/química , Esfingosina/análogos & derivados , Humanos , Esfingosina/sangre
2.
J Colloid Interface Sci ; 552: 401-411, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31146149

RESUMEN

Herein we present a straightforward approach for the use of polydopamine (PDA) in adsorption of heavy metals from aqueous solutions. This is achieved by fabricating a healthy and environmentally friendly polydimethylsiloxane (PDMS) foam with a mussel inspired PDA layer deposited on the surface. Critical adsorption parameters (pH, temperature and PDA thickness) are optimized by the application of experimental design methodology. Adsorption kinetics and isotherms are studied in detail evidencing a good fitting with Langmuir isotherm and pseudo-second-order kinetics thus suggesting the occurrence of a chemical sorption process with monolayer nature between metals and PDMS/PDA foam. Intraparticle diffusion model evidences good accessibility and high affinity of binding sites on PDA surface. Once adsorbed, metals are reduced to a lower toxic form and can be then removed by a mild acidic treatment thus being easily collected and stocked.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...