Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-484873

RESUMEN

The SARS-CoV-2 Omicron variant exhibits very high levels of transmission, pronounced resistance to authorized therapeutic human monoclonal antibodies and reduced sensitivity to vaccine-induced immunity. Here we describe P2G3, a human monoclonal antibody (mAb) isolated from a previously infected and vaccinated donor, which displays picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other current variants, and is thus markedly more potent than all authorized or clinically advanced anti-SARS-CoV-2 mAbs. Structural characterization of P2G3 Fab in complex with the Omicron Spike demonstrates unique binding properties to both down and up spike trimer conformations at an epitope that partially overlaps with the receptor-binding domain (RBD), yet is distinct from those bound by all other characterized mAbs. This distinct epitope and angle of attack allows P2G3 to overcome all the Omicron mutations abolishing or impairing neutralization by other anti-SARS-COV-2 mAbs, and P2G3 accordingly confers complete prophylactic protection in the SARS-CoV-2 Omicron monkey challenge model. Finally, although we could isolate in vitro SARS-CoV2 mutants escaping neutralization by P2G3 or by P5C3, a previously described broadly active Class 1 mAb, we found these viruses to be lowly infectious and their key mutations extremely rare in the wild, and we could demonstrate that P2G3/P5C3 efficiently cross-neutralized one anothers escapees. We conclude that this combination of mAbs has great prospects in both the prophylactic and therapeutic settings to protect from Omicron and other VOCs.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-481472

RESUMEN

Ivermectin, an FDA-approved antiparasitic drug, has been reported to have in vitro activity against SARS-CoV-2. An increasing off-label use of Ivermectin for COVID-19 has been reported. We here assessed the effect of Ivermectin in Syrian hamsters infected with the SARS-CoV-2 Beta (B.1.351) variant. Infected animals received a clinically relevant dose of Ivermectin (0.4 mg/kg subcutaneously dosed) once daily for four consecutive days after which the effect was quantified. Ivermectin monotherapy did not reduce lung viral load and even significantly worsened the SARS-CoV-2-induced lung pathology. Additionally, it did not potentiate the activity of Molnupiravir (Lagevrio) when combined with this drug. This study contributes to the growing body of evidence that Ivermectin does not result in a beneficial effect in the treatment of COVID-19. These findings are important given the increasing, dangerous off-label use of Ivermectin for the treatment of COVID-19.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-474086

RESUMEN

The emergence of SARS-CoV-2 variants of concern (VoCs) has exacerbated the COVID-19 pandemic. End of November 2021, a new SARS-CoV-2 variant namely the omicron (B.1.1.529) emerged. Since this omicron variant is heavily mutated in the spike protein, WHO classified this variant as the 5th variant of concern (VoC). We previously demonstrated that the other SARS-CoV-2 VoCs replicate efficiently in Syrian hamsters, alike also the ancestral strains. We here wanted to explore the infectivity of the omicron variant in comparison to the ancestral D614G strain. Strikingly, in hamsters that had been infected with the omicron variant, a 3 log10 lower viral RNA load was detected in the lungs as compared to animals infected with D614G and no infectious virus was detectable in this organ. Moreover, histopathological examination of the lungs from omicron-infecetd hamsters revealed no signs of peri-bronchial inflammation or bronchopneumonia. Further experiments are needed to determine whether the omicron VoC replicates possibly more efficiently in the upper respiratory tract of hamsters than in their lungs.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-470011

RESUMEN

Treatment with neutralizing monoclonal antibodies (mAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to COVID-19 management. Unfortunately, SARS-CoV-2 variants can escape several of these recently approved mAbs, highlighting the need for additional discovery and development. In a convalescent COVID-19 patient, we identified six mAbs, classified in four epitope groups, that potently neutralized SARS-CoV-2 Wuhan, alpha, beta, gamma and delta infection in vitro. In hamsters, mAbs 3E6 and 3B8 potently cured infection with SARS-CoV-2 Wuhan, beta and delta when administered post-viral infection at 5 mg/kg. Even at 0.2 mg/kg, 3B8 still reduced viral titers. Intramuscular delivery of DNA-encoded 3B8 resulted in in vivo mAb production of median serum levels up to 90 g/ml, and protected hamsters against delta infection. Overall, our data mark 3B8 as a promising candidate against COVID-19, and highlight advances in both the identification and gene-based delivery of potent human mAbs.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-467077

RESUMEN

There is an urgent need for potent and selective antivirals against SARS-CoV-2. Pfizer developed PF-07321332 (PF-332), a potent inhibitor of the viral main protease (Mpro, 3CLpro) that can be dosed orally and that is in clinical development. We here report that PF-332 exerts equipotent in vitro activity against the four SARS-CoV-2 variants of concerns (VoC) and that it can completely arrest replication of the alpha variant in primary human airway epithelial cells grown at the air-liquid interface. Treatment of Syrian Golden hamsters with PF-332 (250 mg/kg, twice daily) completely protected the animals against intranasal infection with the beta (B.1.351) and delta (B.1.617.2) SARS-CoV-2 variants. Moreover, treatment of SARS-CoV-2 (B.1.617.2) infected animals with PF-332 completely prevented transmission to untreated co-housed sentinels.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-442808

RESUMEN

The repeated spillovers of {beta}-coronaviruses in humans along with the rapid emergence of SARS-CoV-2 escape variants highlight the need to develop broad coronavirus therapeutics and vaccines. Five monoclonal antibodies (mAbs) were isolated from COVID-19 convalescent individuals and found to cross-react with multiple {beta}-coronavirus spike (S) glycoproteins by targeting the stem helix. One of these mAbs, S2P6, cross-reacts with more than twenty human and animal {beta}-coronavirus S glycoproteins and broadly neutralizes SARS-CoV-2 and pseudotyped viruses from the sarbecovirus, merbecovirus and embecovirus subgenera. Structural and functional studies delineate the molecular basis of S2P6 cross-reactivity and broad neutralization and indicate that this mAb blocks viral entry by inhibiting membrane fusion. S2P6 protects hamsters challenged with SARS-CoV-2 (including the B.1.351 variant of concern) through direct viral neutralization and Fc-mediated effector functions. Serological and B cell repertoire analyses indicate that antibodies targeting the stem helix are found in some convalescent donors and vaccinees but are predominantly of narrow specificity. Germline reversion of the identified cross-reactive mAbs revealed that their unmutated ancestors are specific for the endemic OC43 or HKU1 viruses and acquired enhanced affinity and breadth through somatic mutations. These data demonstrate that conserved epitopes in the coronavirus fusion machinery can be targeted by protective antibodies and provide a framework for structure-guided design of pan-{beta}-coronavirus vaccines eliciting broad protection.

7.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-438818

RESUMEN

The recent emergence of SARS-CoV-2 variants of concern (VOC) and the recurrent spillovers of coronaviruses in the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here, we describe a human monoclonal antibody (mAb), designated S2x259, recognizing a highly conserved cryptic receptor-binding domain (RBD) epitope and cross-reacting with spikes from all sarbecovirus clades. S2x259 broadly neutralizes spike-mediated entry of SARS-CoV-2 including the B.1.1.7, B.1.351, P.1 and B.1.427/B.1.429 VOC, as well as a wide spectrum of human and zoonotic sarbecoviruses through inhibition of ACE2 binding to the RBD. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2x259 possesses a remarkably high barrier to the emergence of resistance mutants. We show that prophylactic administration of S2x259 protects Syrian hamsters against challenges with the prototypic SARS-CoV-2 and the B.1.351 variant, suggesting this mAb is a promising candidate for the prevention and treatment of emergent VOC and zoonotic infections. Our data unveil a key antigenic site targeted by broadly-neutralizing antibodies and will guide the design of pan-sarbecovirus vaccines.

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-433449

RESUMEN

We have identified camelid single-domain antibodies (VHHs) that cross-neutralize SARS-CoV-1 and -2, such as VHH72, which binds to a unique highly conserved epitope in the viral receptor-binding domain (RBD) that is difficult to access for human antibodies. Here, we establish a protein engineering path for how a stable, long-acting drug candidate can be generated out of such a VHH building block. When fused to human IgG1-Fc, the prototype VHH72 molecule prophylactically protects hamsters from SARS-CoV-2. In addition, we demonstrate that both systemic and intranasal application protects hACE-2-transgenic mice from SARS-CoV-2 induced lethal disease progression. To boost potency of the lead, we used structure-guided molecular modeling combined with rapid yeast-based Fc-fusion prototyping, resulting in the affinity-matured VHH72_S56A-Fc, with subnanomolar SARS-CoV-1 and -2 neutralizing potency. Upon humanization, VHH72_S56A was fused to a human IgG1 Fc with optimized manufacturing homogeneity and silenced effector functions for enhanced safety, and its stability as well as lack of off-target binding was extensively characterized. Therapeutic systemic administration of a low dose of VHH72_S56A-Fc antibodies strongly restricted replication of both original and D614G mutant variants of SARS-CoV-2 virus in hamsters, and minimized the development of lung damage. This work led to the selection of XVR011 for clinical development, a highly stable anti-COVID-19 biologic with excellent manufacturability. Additionally, we show that XVR011 is unaffected in its neutralizing capacity of currently rapidly spreading SARS-CoV-2 variants, and demonstrate its unique, wide scope of binding across the Sarbecovirus clades.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-433062

RESUMEN

Within one year after its emergence, more than 108 million people contracted SARS-CoV-2 and almost 2.4 million succumbed to COVID-19. New SARS-CoV-2 variants of concern (VoC) are emerging all over the world, with the threat of being more readily transmitted, being more virulent, or escaping naturally acquired and vaccine-induced immunity. At least three major prototypic VoC have been identified, i.e. the UK (B.1.1.7), South African (B.1.351) and Brazilian (B.1.1.28.1), variants. These are replacing formerly dominant strains and sparking new COVID-19 epidemics and new spikes in excess mortality. We studied the effect of infection with prototypic VoC from both B.1.1.7 and B.1.351 lineages in Syrian golden hamsters to assess their relative infectivity and pathogenicity in direct comparison to two basal SARS-CoV-2 strains isolated in early 2020. A very efficient infection of the lower respiratory tract of hamsters by these VoC is observed. In line with clinical evidence from patients infected with these VoC, no major differences in disease outcome were observed as compared to the original strains as was quantified by (i) histological scoring, (ii) micro-computed tomography, and (iii) analysis of the expression profiles of selected antiviral and pro-inflammatory cytokine genes. Noteworthy however, in hamsters infected with VoC B.1.1.7, a particularly strong elevation of proinflammatory cytokines was detected. Overall, we established relevant preclinical infection models that will be pivotal to assess the efficacy of current and future vaccine(s) (candidates) as well as therapeutics (small molecules and antibodies) against two important SARS-CoV-2 VoC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...