Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Genet ; 13: 891702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795209

RESUMEN

Lentil is an important pulse crop not only because of its high nutrient value but also because of its ecological advantage in a sustainable agricultural system. Our previous work showed that the cultivated lentil and wild lentil germplasm respond differently to light environments, especially to low R/FR-induced shade conditions. Little is known about how cultivated and wild lentils respond to shade at the level of gene expression and function. In this study, transcriptomic profiling of a cultivated lentil (Lupa, L. culinaris) and a wild lentil (BGE 016880, L. orientalis) at several growth stages is presented. De novo transcriptomes were assembled for both genotypes, and differential gene expression analysis and gene ontology enrichment analysis were performed. The transcriptomic resources generated in this study provide fundamental information regarding biological processes and genes associated with shade responses in lentils. BGE 016880 and Lupa shared a high similarity in their transcriptomes; however, differential gene expression profiles were not consistent between these two genotypes. The wild lentil BGE 016880 had more differentially expressed genes than the cultivated lentil Lupa. Upregulation of genes involved in gibberellin, brassinosteroid, and auxin synthesis and signaling pathways, as well as cell wall modification, in both genotypes explains their similarity in stem elongation response under the shade. Genes involved in jasmonic acid and flavonoid biosynthesis pathways were downregulated in BGE 016880 only, and biological processes involved in defense responses were significantly enriched in the wild lentil BGE 016880 only. Downregulation of WRKY and MYB transcription factors could contribute to the reduced defense response in BGE 016880 but not in Lupa under shade conditions. A better understanding of shade responses of pulse crop species and their wild relatives will play an important role in developing genetic strategies for crop improvement in response to changes in light environments.

2.
Database (Oxford) ; 20212021 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-34389844

RESUMEN

Researchers are seeking cost-effective solutions for management and analysis of large-scale genotypic and phenotypic data. Open-source software is uniquely positioned to fill this need through user-focused, crowd-sourced development. Tripal, an open-source toolkit for developing biological data web portals, uses the GMOD Chado database schema to achieve flexible, ontology-driven storage in PostgreSQL. Tripal also aids research-focused web portals in providing data according to findable, accessible, interoperable, reusable (FAIR) principles. We describe here a fully relational PostgreSQL solution to handle large-scale genotypic and phenotypic data that is implemented as a collection of freely available, open-source modules. These Tripal extension modules provide a holistic approach for importing, storage, display and analysis within a relational database schema. Furthermore, they embody the Tripal approach to FAIR data by providing multiple search tools and ensuring metadata is fully described and interoperable. Our solution focuses on data integrity, as well as optimizing performance to provide a fully functional system that is currently being used in the production of Tripal portals for crop species. We fully describe the implementation of our solution and discuss why a PostgreSQL-powered web portal provides an efficient environment for researcher-driven genotypic and phenotypic data analysis.


Asunto(s)
Bases de Datos Genéticas , Programas Informáticos , Genotipo , Metadatos
3.
Ann Bot ; 128(4): 481-496, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34185828

RESUMEN

BACKGROUND AND AIMS: Flowering time is important due to its roles in plant adaptation to different environments and subsequent formation of crop yield. Changes in light quality affect a range of developmental processes including flowering time, but little is known about light quality-induced flowering time control in lentil. This study aims to investigate the genetic basis for differences in flowering response to light quality in lentil. METHODS: We explored variation in flowering time caused by changes in red/far-red-related light quality environments of a lentil interspecific recombinant inbred line (RIL) population developed from a cross between Lens culinaris cv. Lupa and L. orientalis accession BGE 016880. A genetic linkage map was constructed and then used for identifying quantitative trait loci (QTLs) associated with flowering time regulation under different light quality environments. Differential gene expression analysis through transcriptomic study and RT-qPCR were used to identify potential candidate genes. KEY RESULTS: QTL mapping located 13 QTLs controlling flower time under different light quality environments, with phenotypic variance explained ranging from 1.7 to 62.9 %. Transcriptomic profiling and gene expression analysis for both parents of this interspecific RIL population identified flowering-related genes showing environment-specific differential expression (flowering DEGs). One of these, a member of the florigen gene family FTa1 (LcFTa1), was located close to three major QTLs. Furthermore, gene expression results suggested that two other florigen genes (LcFTb1 and LcFTb2), MADS-box transcription factors such as LcAGL6/13d, LcSVPb, LcSOC1b and LcFULb, as well as bHLH transcription factor LcPIF6 and Gibberellin 20 oxidase LcGA20oxC,G may also be involved in the light quality response. CONCLUSIONS: Our results show that a major component of flowering time sensitivity to light quality is tightly linked to LcFTa1 and associated with changes in its expression. This work provides a foundation for crop improvement of lentil with better adaptation to variable light environments.


Asunto(s)
Flores/fisiología , Lens (Planta) , Luz , Mapeo Cromosómico , Perfilación de la Expresión Génica , Ligamiento Genético , Lens (Planta)/genética , Lens (Planta)/fisiología , Fenotipo , Sitios de Carácter Cuantitativo , Transcriptoma
4.
Front Plant Sci ; 10: 965, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428111

RESUMEN

KnowPulse (https://knowpulse.usask.ca) is a breeder-focused web portal for pulse breeders and geneticists. With a focus on diversity data, KnowPulse provides information on genetic markers, sequence variants, phenotypic traits and germplasm for chickpea, common bean, field pea, faba bean, and lentil. Genotypic data is accessible through the genotype matrix tool, displayed as a marker-by-germplasm table of genotype calls specific to germplasm chosen by the researcher. It is also summarized on genetic marker and sequence variant pages. Phenotypic data is visualized in trait distribution plots: violin plots for quantitative data and histograms for qualitative data. These plots are accessible through trait, germplasm, and experiment pages, as well as through a single page search tool. KnowPulse is built using the open-source Tripal toolkit and utilizes open-source tools including, but not limited to, species-specific JBrowse instances, a BLAST interface, and whole-genome CViTjs visualizations. KnowPulse is constantly evolving with data and tools added as they become available. Full integration of genetic maps and quantitative trait loci is imminent, and development of tools exploring structural variation is being explored.

5.
Plant Genome ; 11(1)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29505642

RESUMEN

The dimensions of lentil ( Medik.) seeds are important quality parameters that are major determinants of market preference, cooking time, and post-harvest milling quality. Knowledge of the genetic control of traits related to seed dimensions would be useful for crop improvement. The principal aim of this study was to identify single nucleotide polymorphism (SNP) markers linked to genes that control seed diameter, seed thickness, and seed plumpness. Association mapping analysis with SNP markers was used to study the seed dimensions of 138 diverse cultivated lentil accessions grown at two locations in Saskatchewan, Canada, in 2011 and 2012. Six marker-trait associations were shown to be significant for the studied seed dimension characteristics. Two SNP markers closely associated with seed diameter across locations and years identified in previous work were validated in this study. Three additional marker-seed thickness associations were identified. Using the association mapping strategy, we confirmed the presence of two genomic regions controlling seed diameter and plumpness. This information can be used worldwide as a resource for lentil seed quality improvement programs.


Asunto(s)
Lens (Planta)/genética , Polimorfismo de Nucleótido Simple , Semillas/fisiología , Genética de Población , Fenotipo , Saskatchewan , Semillas/genética
6.
Plant Genome ; 10(2)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28724070

RESUMEN

Lentil ( Medik.) seeds are relatively rich in iron (Fe) and zinc (Zn), making lentil a potential crop to aid in the global battle against human micronutrient deficiency. Understanding the genetic basis for uptake of seed Fe and Zn is required to increase sustainable concentrations of these minerals in seeds. The objectives of this study were to characterize genetic variation in seed Fe and Zn concentration and to identify molecular markers associated with these traits across diverse lentil accessions. A set of 138 cultivated lentil accessions from 34 countries were evaluated in four environments (2 sites × 2 yr) in Saskatchewan, Canada. The collection was genotyped using 1150 single-nucleotide polymorphism (SNP) markers that are distributed across the lentil genome. The germplasm tested exhibited a wide range of variation for seed Fe and Zn concentration. The marker-trait association analysis detected two SNP markers tightly linked to seed Fe and one linked to seed Zn concentration (-log10 ≥ 4.36). Additional markers were detected at -log10 ≥ 3.06. A number of putative candidate genes underlying detected loci encode Fe- and Zn-related functions. This study provides insight into the genetics of seed Fe and Zn concentration of lentil and opportunities for marker-assisted selection to improve micronutrient concentration as part of micronutrient biofortification programs.


Asunto(s)
Marcadores Genéticos , Hierro/metabolismo , Lens (Planta)/embriología , Semillas/metabolismo , Zinc/metabolismo , Lens (Planta)/genética , Polimorfismo de Nucleótido Simple
7.
Front Plant Sci ; 7: 1093, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27507980

RESUMEN

Assessment of genetic diversity and population structure of germplasm collections plays a critical role in supporting conservation and crop genetic enhancement strategies. We used a cultivated lentil (Lens culinaris Medik.) collection consisting of 352 accessions originating from 54 diverse countries to estimate genetic diversity and genetic structure using 1194 polymorphic single nucleotide polymorphism (SNP) markers which span the lentil genome. Using principal coordinate analysis, population structure analysis and UPGMA cluster analysis, the accessions were categorized into three major groups that prominently reflected geographical origin (world's agro-ecological zones). The three clusters complemented the origins, pedigrees, and breeding histories of the germplasm. The three groups were (a) South Asia (sub-tropical savannah), (b) Mediterranean, and (c) northern temperate. Based on the results from this study, it is also clear that breeding programs still have considerable genetic diversity to mine within the cultivated lentil, as surveyed South Asian and Canadian germplasm revealed narrow genetic diversity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA