Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J R Army Med Corps ; 165(1): 33-37, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29794172

RESUMEN

Injuries sustained due to attacks from explosive weapons are multiple in number, complex in nature, and not well characterised. Blast may cause damage to the human body by the direct effect of overpressure, penetration by highly energised fragments, and blunt trauma by violent displacements of the body. The ability to reproduce the injuries of such insults in a well-controlled fashion is essential in order to understand fully the unique mechanism by which they occur, and design better treatment and protection strategies to alleviate the resulting poor long-term outcomes. This paper reports a range of experimental platforms that have been developed for different blast injury models, their working mechanism, and main applications. These platforms include the shock tube, split-Hopkinson bars, the gas gun, drop towers and bespoke underbody blast simulators.


Asunto(s)
Investigación Biomédica , Traumatismos por Explosión , Explosiones , Animales , Investigación Biomédica/instrumentación , Investigación Biomédica/métodos , Simulación por Computador , Humanos , Medicina Militar , Presión , Ratas
2.
Comput Methods Biomech Biomed Engin ; 17(13): 1502-17, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24786914

RESUMEN

A three-dimensional (3D) knee joint computational model was developed and validated to predict knee joint contact forces and pressures for different degrees of malalignment. A 3D computational knee model was created from high-resolution radiological images to emulate passive sagittal rotation (full-extension to 65°-flexion) and weight acceptance. A cadaveric knee mounted on a six-degree-of-freedom robot was subjected to matching boundary and loading conditions. A ligament-tuning process minimised kinematic differences between the robotically loaded cadaver specimen and the finite element (FE) model. The model was validated by measured intra-articular force and pressure measurements. Percent full scale error between FE-predicted and in vitro-measured values in the medial and lateral compartments were 6.67% and 5.94%, respectively, for normalised peak pressure values, and 7.56% and 4.48%, respectively, for normalised force values. The knee model can accurately predict normalised intra-articular pressure and forces for different loading conditions and could be further developed for subject-specific surgical planning.


Asunto(s)
Simulación por Computador , Articulación de la Rodilla/anatomía & histología , Modelos Anatómicos , Osteoartritis/cirugía , Algoritmos , Fenómenos Biomecánicos , Cartílago/fisiología , Análisis de Elementos Finitos , Humanos , Articulación de la Rodilla/fisiología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Presión , Rango del Movimiento Articular , Rotación , Soporte de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...