Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 20(4): 1656-1672, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-37018141

RESUMEN

The hydropathy of proteins or quantitative assessment of protein-water interactions has been a topic of interest for decades. Most hydropathy scales use a residue-based or atom-based approach to assign fixed numerical values to the 20 amino acids and categorize them as hydrophilic, hydroneutral, or hydrophobic. These scales overlook the protein's nanoscale topography, such as bumps, crevices, cavities, clefts, pockets, and channels, in calculating the hydropathy of the residues. Some recent studies have included protein topography in determining hydrophobic patches on protein surfaces, but these methods do not provide a hydropathy scale. To overcome the limitations in the existing methods, we have developed a Protocol for Assigning a Residue's Character on the Hydropathy (PARCH) scale that adopts a holistic approach to assigning the hydropathy of a residue. The parch scale evaluates the collective response of the water molecules in the protein's first hydration shell to increasing temperatures. We performed the parch analysis of a set of well-studied proteins that include the following─enzymes, immune proteins, and integral membrane proteins, as well as fungal and virus capsid proteins. Since the parch scale evaluates every residue based on its location, a residue may have very different parch values inside a crevice versus a surface bump. Thus, a residue can have a range of parch values (or hydropathies) dictated by the local geometry. The parch scale calculations are computationally inexpensive and can compare hydropathies of different proteins. The parch analysis can affordably and reliably aid in designing nanostructured surfaces, identifying hydrophilic and hydrophobic patches, and drug discovery.


Asunto(s)
Aminoácidos , Proteínas de la Membrana , Aminoácidos/química , Proteínas de la Membrana/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas
2.
Biomacromolecules ; 24(3): 1244-1257, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36757021

RESUMEN

Lipidated proteins are an emerging class of hybrid biomaterials that can integrate the functional capabilities of proteins into precisely engineered nano-biomaterials with potential applications in biotechnology, nanoscience, and biomedical engineering. For instance, fatty-acid-modified elastin-like polypeptides (FAMEs) combine the hierarchical assembly of lipids with the thermoresponsive character of elastin-like polypeptides (ELPs) to form nanocarriers with emergent temperature-dependent structural (shape or size) characteristics. Here, we report the biophysical underpinnings of thermoresponsive behavior of FAMEs using computational nanoscopy, spectroscopy, scattering, and microscopy. This integrated approach revealed that temperature and molecular syntax alter the structure, contact, and hydration of lipid, lipidation site, and protein, aligning with the changes in the nanomorphology of FAMEs. These findings enable a better understanding of the biophysical consequence of lipidation in biology and the rational design of the biomaterials and therapeutics that rival the exquisite hierarchy and capabilities of biological systems.


Asunto(s)
Elastina , Proteínas Intrínsecamente Desordenadas , Elastina/química , Proteínas Intrínsecamente Desordenadas/química , Péptidos/química , Temperatura , Biotecnología , Materiales Biocompatibles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...