Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(10): 2661-2664, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748130

RESUMEN

Wireless data traffic is expected to exponentially increase in the future, and meeting this demand will require high data rate photonic-wireless links operating in the W-band (75-110 GHz). For this purpose, pulse-amplitude-modulation with four levels (PAM-4)-based intensity modulation and direct detection (IM-DD) photonic-wireless systems are preferred due to their simplified configuration. In this Letter, we present an experimental demonstration of an IM-DD PAM-4 photonic-wireless link in the W-band, leveraging a monolithic dual-laser photonic chip to enhance integration. Through injection-locking by an optical comb, the chip generates a W-band wireless signal via photo-mixing with a photodiode. This comb injection approach facilitates the phase correlation of the chip's two modes, resulting in a stabilized beat note. Additionally, the on-chip integration of the dual lasers enables the modulation of the two modes with a single modulator, improving the signal-to-noise ratio (SNR) while eliminating the need for extra splitters or combiners. Meanwhile, the envelope detector (ED) plays a crucial role in the simplified configuration, contributing to the overall decrease in size, weight, power, and complexity of the system. The integration of the chip-based phase-locked light source and the utilization of the ED thus signify noteworthy features of our experimental setup, which functions without the necessity of both optical and electrical local oscillators. PAM-4 signal modulation is simultaneously applied to the two coherent optical carriers. Our experiments have effectively transmitted 5 and 10 Gbaud PAM-4 W-band wireless signals in a cost-effective, lightweight, and straightforward configuration, achieving a line data rate of up to 20 Gbit/s economically. These experimental results demonstrate the practical potential of implementing fully integrated photonic-wireless transmitters.

2.
Opt Lett ; 49(5): 1361-1364, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427013

RESUMEN

We observe that the modal field distribution of a dielectric slot waveguide closely resembles a magnetic dipole antenna. Such an aperture distribution traditionally demands metals, making it ill-suited to high frequencies due to excessive ohmic loss. By terminating a dielectric slot waveguide with a matched free-space interface, a compact all-dielectric radiating magnetic dipole is realized. In this way, we introduce general-purpose dipole antennas, which have long been a mainstay of RF and microwave ranges, into the realm of light wave photonic integrated circuits. The existence of the desired magnetic dipole aperture distribution is experimentally confirmed in the terahertz range, at ∼275 GHz, and good matching is evident in the ∼-25 dB reflection level. This is the electrically smallest radiator to ever be incorporated into an all-dielectric waveguiding platform.

3.
Opt Lett ; 48(23): 6275-6278, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039245

RESUMEN

Photonic integrated circuits play a vital role in enabling terahertz (THz) applications that require multi-octave bandwidth. Prior research has been limited in bandwidth due to rectangular waveguide (WRs) interconnects, which can only support single octave at low loss. To overcome this fundamental limitation, we exploit the ultra-wideband (UWB) near-field coupling between planar waveguides and silicon (Si)-based subwavelength dielectric rod waveguides (DRWs) to interconnect THz bandwidth uni-traveling-carrier photodiodes (UTC-PDs) at 0.08-1.03 THz. In a proof-of-concept experiment, the on-chip integrated UTC-PDs demonstrate a UWB operation from 0.1 THz to 0.4 THz. Furthermore, by employing Si DRWs as probes, multi-octave device-under-test characterization of UTC-PDs integrated with UWB transition is enabled with only one DRW probe. The proposed UWB interconnect technology is distinct from previously used WR-based ground-signal-ground probes or quasi-optical free-space coupling since it can provide multi-octave bandwidth and enable on-chip THz circuit integration.

4.
Opt Express ; 30(24): 43195-43208, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36523023

RESUMEN

A novel realisation of photonically integrated optical frequency comb generation is demonstrated on indium phosphide (InP) using a generic foundry platform. The architecture, based on the amplified recirculating loop technique, consists of cascaded electro-optic phase modulators embedded within a short waveguide loop. While an injected continuous wave laser signal is recirculated by the loop, the modulators are driven with a modulation frequency corresponding to the round-trip loop length frequency. This results in many phase coherent, evenly spaced optical comb lines being generated. The choice of InP as an integration platform allows immediate optical amplification of the modulated signal by embedded semiconductor optical amplifiers, enabling loop losses to be compensated and expanding the comb across broad optical bandwidths. This approach reduces the requirement for external, high-power optical amplifiers, improving the compactness and power efficiency of the full system. The system was modelled to identify off-resonance behaviour, outlining limits in matching both the modulation frequency and seed laser frequency to the round-trip loop frequency for optimal comb line generation to be achieved. The experimental device occupied a fraction of the 6 x 2 mm2 InP chip and operated at round-trip loop frequencies of 6.71 GHz to produce 59 comb lines within a 20 dB power envelope. All comb lines exhibited strong phase coherence as characterised by low composite phase noise measurements of -105 dBc/Hz at 100 kHz. A second device is also presented with a shorter loop length operating at ∼10 GHz which generated 57 comb lines. Both loop configurations included short waveguide phase shifters providing a degree of tunability of the free spectral range with a tuning range of 150 MHz for small injection currents of < 2.5 mA.

6.
Sci Rep ; 12(1): 9526, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681074

RESUMEN

We present a novel approach to coherent photonic THz systems supporting complex modulation. The proposed scheme uses a single optical path avoiding the problems of current implementations, which include: phase decorrelation, 3-dB power loss, and polarization and power matching circuits. More importantly, we show that our novel approach is compatible with direct modulation of the output of an optical frequency comb (i.e., not requiring the demultiplexing of two tones from the comb), further simplifying the system and enabling an increase in the transmitted RF power for a fixed average optical power injected into the photodiode.

7.
Nat Commun ; 13(1): 1388, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296670

RESUMEN

Photonic generation of Terahertz (THz) carriers displays high potential for THz communications with a large tunable range and high modulation bandwidth. While many photonics-based THz generations have recently been demonstrated with discrete bulky components, their practical applications are significantly hindered by the large footprint and high energy consumption. Herein, we present an injection-locked heterodyne source based on generic foundry-fabricated photonic integrated circuits (PIC) attached to a uni-traveling carrier photodiode generating high-purity THz carriers. The generated THz carrier is tunable within the range of 0-1.4 THz, determined by the wavelength spacing between the two monolithically integrated distributed feedback (DFB) lasers. This scheme generates and transmits a 131 Gbits-1 net rate signal over a 10.7-m distance with -24 dBm emitted power at 0.4 THz. This monolithic dual-DFB PIC-based THz generation approach is a significant step towards fully integrated, cost-effective, and energy-efficient THz transmitters.

8.
Opt Express ; 29(11): 16563-16571, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34154216

RESUMEN

This paper describes the detailed characterization of a novel InP-Si3N4 dual laser module with results revealing relative intensity noise (RIN) as low as -165 dB/Hz and wide wavelength tunability (100 nm). The hybrid coupled laser is deployed in an unamplified 28 GBd 8 level pulse amplitude modulation (PAM) short-reach data center (DC) transmission system. System performance, which is experimentally evaluated in terms of received signal bit error ratio (BER), demonstrates the ability of the proposed laser module to support PAM-8 transmission across a 100 nm tuning range with less than 1 dB variance in receiver sensitivity over the operating wavelength range. Comparative performance studies not only indicate that the proposed source can outperform a commercial external cavity laser (ECL) in an intensity modulation/direct detection (IM/DD) link but also highlight the critical impact of RIN in the design of advanced modulation short-reach systems.

9.
Opt Express ; 26(14): 18386-18398, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114019

RESUMEN

In this paper, a monolithically integrated ∼1.55 µm semiconductor laser in the fourth harmonic colliding pulse mode locking configuration is reported. This device was developed within a multi-project wafer run at an InP-based active-passive generic foundry. The 1.66-mm Fabry-Pérot cavity is formed with two on-chip reflector building blocks rather than cleaved facets. In the cavity, three absorber sections symmetrically divide the cavity in four gain segments. This laser diode is able to emit 100-GHz pulse trains with 500-fs pulse duration as well as two-tone emissions with a frequency separation of 2.7 THz. The dependence of the spectral behavior on the forward bias current for gain sections and the reverse bias voltage for absorber sections are experimentally demonstrated.

10.
Opt Lett ; 43(3): 507-510, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29400827

RESUMEN

A monolithically integrated mode-locked semiconductor laser is proposed. The compound ring cavity is composed of a colliding pulse mode-locking (ML) subcavity and a passive Fabry-Perot feedback subcavity. These two 1.6 mm long subcavities are coupled by using on-chip reflectors at both ends, enabling harmonic mode locking. By changing DC-bias conditions, optical mode spacing from 50 to 450 GHz is experimentally demonstrated. Ultrafast pulses shorter than 0.3 ps emitted from this laser diode are shown in autocorrelation traces.

11.
Sci Rep ; 8(1): 3018, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445213

RESUMEN

We report for the first time the successful wavelength stabilization of two hybrid integrated InP/Polymer DBR lasers through optical injection. The two InP/Polymer DBR lasers are integrated into a photonic integrated circuit, providing an ideal source for millimeter and Terahertz wave generation by optical heterodyne technique. These lasers offer the widest tuning range of the carrier wave demonstrated to date up into the Terahertz range, about 20 nm (2.5 THz) on a single photonic integrated circuit. We demonstrate the application of this source to generate a carrier wave at 330 GHz to establish a wireless data transmission link at a data rate up to 18 Gbit/s. Using a coherent detection scheme we increase the sensitivity by more than 10 dB over direct detection.

12.
Opt Lett ; 42(19): 3872-3875, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957148

RESUMEN

We report on an optical frequency comb with 14 nm (∼1.8 THz) spectral bandwidth at a -3 dB level that is generated using a passively mode-locked quantum-well laser in photonic integrated circuits fabricated through an InP generic photonic integration technology platform. This 21.5-GHz colliding-pulse mode-locked laser cavity is defined by on-chip reflectors incorporating intracavity phase modulators followed by an extracavity semiconductor optical amplifier as a booster amplifier. A 1.8-THz-wide optical comb spectrum is presented with an ultrafast pulse that is 0.35 ps wide. The radio frequency beat note has a 3-dB linewidth of 450 kHz and 35-dB SNR.

13.
Opt Lett ; 42(8): 1532-1535, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28409790

RESUMEN

This Letter presents a photonics-based millimeter wave and terahertz frequency synthesizer using a monolithic InP photonic integrated circuit composed of a mode-locked laser (MLL) and two pulse interleaver stages to multiply the repetition rate frequency. The MLL is a multiple colliding pulse MLL producing an 80 GHz repetition rate pulse train. Through two consecutive monolithic pulse interleaver structures, each doubling the repetition rate, we demonstrate the achievement of 160 and 320 GHz. The fabrication was done on a multi-project wafer run of a generic InP photonic technology platform.

14.
Opt Express ; 23(16): 20288-96, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26367884

RESUMEN

We report the monolithic integration of a 15-channel multiplexer on indium phosphide. It covers the 7.1-to-8.5 µm wavelength range suitable for combining the outputs of several individual lasers. The fabrication is compatible with the growth of active layers, therefore enabling a fully integrate broadband laser source in the mid-infrared spectral range. Channels are accurately spaced in wavelength (97 nm) in good agreement with design.

15.
Opt Express ; 23(11): 14666-76, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072826

RESUMEN

We report the achievement of colliding pulse mode-locked (CPM) regimes on a novel on-chip mode locked laser diode (OCCP-MLLD). The advantage of the resonator structure that we present is that the end-mirrors are defined through multimode interference reflectors (MIRs), which provide precise control of the cavity length avoiding the need for cleaved facets. This simplifies positioning the saturable absorber at the center of the resonator to achieve the colliding pulse mode-locked regime and double the repetition rate, reaching the millimeter wave frequency range. An additional advantage is that the pulsed output is delivered within the Photonic Integrated Circuit chip for further processing (i.e. modulation). We demonstrate a colliding pulse passive mode locked regime with pulse widths below a picosecond (Δτ = 0.64 ps), timing jitter σT = 75 fs and amplitude noise NAM = 0.012 dBc. The samples were fabricated in a generic InP foundry service through multi-project wafer (MPW) runs.

16.
Opt Express ; 22(24): 29404-12, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25606875

RESUMEN

A monolithically integrated photonic source for tuneable mm-wave signal generation has been fabricated. The source consists of 14 active components, i.e. semiconductor lasers, amplifiers and photodetectors, all integrated on a 3 mm(2) InP chip. Heterodyne signals in the range between 85 GHz and 120 GHz with up to -10 dBm output power have been successfully generated. By optically injection locking the integrated lasers to an external optical comb source, high-spectral-purity signals at frequencies >100 GHz have been generated, with phase noise spectral density below -90 dBc/Hz being achieved at offsets from the carrier greater than 10 kHz.


Asunto(s)
Fotones , Procesamiento de Señales Asistido por Computador , Electrónica , Retroalimentación , Rayos Láser
17.
Opt Lett ; 37(17): 3657-9, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22940981

RESUMEN

We report the generation of a 95 GHz carrier frequency by optical heterodyning of two wavelengths from adjacent channels from an arrayed waveguide grating-based multiwavelength laser. The extended cavity structure of the device provides low phase noise and narrow optical linewidth, further enhanced by the intracavity filter effect of the arrayed waveguide grating. We demonstrate that the generated RF beat note, at 95 GHz, has a -3 dB linewidth of 250 kHz. To the best of our knowledge, this is the narrowest RF linewidth generated from a free-running dual-wavelength semiconductor laser. The device is realized as a photonic integrated circuit using active-passive integration technology, and fabricated on a multiproject wafer run, constituting a novel approach for a compact, low-cost dual-wavelength heterodyne source.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA