Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Science ; 377(6612): 1290-1298, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36007018

RESUMEN

Lysosomes coordinate cellular metabolism and growth upon sensing of essential nutrients, including cholesterol. Through bioinformatic analysis of lysosomal proteomes, we identified lysosomal cholesterol signaling (LYCHOS, previously annotated as G protein-coupled receptor 155), a multidomain transmembrane protein that enables cholesterol-dependent activation of the master growth regulator, the protein kinase mechanistic target of rapamycin complex 1 (mTORC1). Cholesterol bound to the amino-terminal permease-like region of LYCHOS, and mutating this site impaired mTORC1 activation. At high cholesterol concentrations, LYCHOS bound to the GATOR1 complex, a guanosine triphosphatase (GTPase)-activating protein for the Rag GTPases, through a conserved cytoplasm-facing loop. By sequestering GATOR1, LYCHOS promotes cholesterol- and Rag-dependent recruitment of mTORC1 to lysosomes. Thus, LYCHOS functions in a lysosomal pathway for cholesterol sensing and couples cholesterol concentrations to mTORC1-dependent anabolic signaling.


Asunto(s)
Colesterol , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Receptores Acoplados a Proteínas G , Colesterol/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteoma/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
Sci Rep ; 12(1): 12648, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879511

RESUMEN

Vigorous spontaneous breathing has emerged as a promotor of lung damage in acute lung injury, an entity known as "patient self-inflicted lung injury". Mechanical ventilation may prevent this second injury by decreasing intrathoracic pressure swings and improving regional air distribution. Therefore, we aimed to determine the effects of spontaneous breathing during the early stage of acute respiratory failure on lung injury and determine whether early and late controlled mechanical ventilation may avoid or revert these harmful effects. A model of partial surfactant depletion and lung collapse was induced in eighteen intubated pigs of 32 ±4 kg. Then, animals were randomized to (1) SB-group: spontaneous breathing with very low levels of pressure support for the whole experiment (eight hours), (2) Early MV-group: controlled mechanical ventilation for eight hours, or (3) Late MV-group: first half of the experiment on spontaneous breathing (four hours) and the second half on controlled mechanical ventilation (four hours). Respiratory, hemodynamic, and electric impedance tomography data were collected. After the protocol, animals were euthanized, and lungs were extracted for histologic tissue analysis and cytokines quantification. SB-group presented larger esophageal pressure swings, progressive hypoxemia, lung injury, and more dorsal and inhomogeneous ventilation compared to the early MV-group. In the late MV-group switch to controlled mechanical ventilation improved the lung inhomogeneity and esophageal pressure swings but failed to prevent hypoxemia and lung injury. In a lung collapse model, spontaneous breathing is associated to large esophageal pressure swings and lung inhomogeneity, resulting in progressive hypoxemia and lung injury. Mechanical ventilation prevents these mechanisms of patient self-inflicted lung injury if applied early, before spontaneous breathing occurs, but not when applied late.


Asunto(s)
Lesión Pulmonar Aguda , Lesión Pulmonar , Atelectasia Pulmonar , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Animales , Hipoxia/patología , Pulmón/patología , Lesión Pulmonar/etiología , Lesión Pulmonar/patología , Modelos Teóricos , Atelectasia Pulmonar/patología , Respiración , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Mecánica Respiratoria , Porcinos
3.
PLoS One ; 14(12): e0225181, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31805071

RESUMEN

BACKGROUND: The spontaneous breathing trial (SBT) assesses the risk of weaning failure by evaluating some physiological responses to the massive venous return increase imposed by discontinuing positive pressure ventilation. This trial can be very demanding for some critically ill patients, inducing excessive physical and cardiovascular stress, including muscle fatigue, heart ischemia and eventually cardiac dysfunction. Extubation failure with emergency reintubation is a serious adverse consequence of a failed weaning process. Some data suggest that as many as 50% of patients that fail weaning do so because of cardiac dysfunction. Unfortunately, monitoring cardiovascular function at the time of the SBT is complex. The aim of our study was to explore if central venous pressure (CVP) changes were related to weaning failure after starting an SBT. We hypothesized that an early rise on CVP could signal a cardiac failure when handling a massive increase on venous return following a discontinuation of positive pressure ventilation. This CVP rise could identify a subset of patients at high risk for extubation failure. METHODS: Two-hundred and four mechanically ventilated patients in whom an SBT was decided were subjected to a monitoring protocol that included blinded assessment of CVP at baseline, and at 2 minutes after starting the trial (CVP-test). Weaning failure was defined as reintubation within 48-hours following extubation. Comparisons between two parametric or non-parametric variables were performed with student T test or Mann Whitney U test, respectively. A logistic multivariate regression was performed to determine the predictive value on extubation failure of usual clinical variables and CVP at 2-min after starting the SBT. RESULTS: One-hundred and sixty-five patients were extubated after the SBT, 11 of whom were reintubated within 48h. Absolute CVP values at 2-minutes, and the change from baseline (dCVP) were significantly higher in patients with extubation failure as compared to those successfully weaned. dCVP was an early predictor for reintubation (OR: 1.70 [1.31,2.19], p<0.001). CONCLUSIONS: An early rise in CVP after starting an SBT was associated with an increased risk of extubation failure. This might represent a warning signal not captured by usual SBT monitoring and could have relevant clinical implications.


Asunto(s)
Presión Venosa Central/fisiología , Enfermedad Crítica , Desconexión del Ventilador/métodos , Adulto , Anciano , Extubación Traqueal/métodos , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Medición de Riesgo
4.
Ann Intensive Care ; 7(1): 29, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28281216

RESUMEN

BACKGROUND: Persistent hyperlactatemia is particularly difficult to interpret in septic shock. Besides hypoperfusion, adrenergic-driven lactate production and impaired lactate clearance are important contributors. However, clinical recognition of different sources of hyperlactatemia is unfortunately not a common practice and patients are treated with the same strategy despite the risk of over-resuscitation in some. Indeed, pursuing additional resuscitation in non-hypoperfusion-related cases might lead to the toxicity of fluid overload and vasoactive drugs. We hypothesized that two different clinical patterns can be recognized in septic shock patients through a multimodal perfusion monitoring. Hyperlactatemic patients with a hypoperfusion context probably represent a more severe acute circulatory dysfunction, and the absence of a hypoperfusion context is eventually associated with a good outcome. We performed a retrospective analysis of a database of septic shock patients with persistent hyperlactatemia after initial resuscitation. RESULTS: We defined hypoperfusion context by the presence of a ScvO2 < 70%, or a P(cv-a)CO2 ≥6 mmHg, or a CRT ≥4 s together with hyperlactatemia. Ninety patients were included, of whom seventy exhibited a hypoperfusion-related pattern and 20 did not. Although lactate values were comparable at baseline (4.8 ± 2.8 vs. 4.7 ± 3.7 mmol/L), patients with a hypoperfusion context exhibited a more severe circulatory dysfunction with higher vasopressor requirements, and a trend to longer mechanical ventilation days, ICU stay, and more rescue therapies. Only one of the 20 hyperlactatemic patients without a hypoperfusion context died (5%) compared to 11 of the 70 with hypoperfusion-related hyperlactatemia (16%). CONCLUSIONS: Two different clinical patterns among hyperlactatemic septic shock patients may be identified according to hypoperfusion context. Patients with hyperlactatemia plus low ScvO2, or high P(cv-a)CO2, or high CRT values exhibited a more severe circulatory dysfunction. This provides a starting point to launch further prospective studies to confirm if this approach can lead to a more selective resuscitation strategy.

5.
In. Rodríguez Vangort, Frances; Garza Salinas, Mario. Memoria del seminario : La nación ante los desastres, retos y oportunidades hacia el siglo XXI. México, D.F, México. Dirección General de Protección Civil;México. Red Mexicana de Estudios Interdiciplinarios para la Protección de Desastres, oct. 1999. p.245-9.
Monografía en Es | Desastres | ID: des-12799

RESUMEN

Se presenta el proyecto de vida hecho por discapacitados para los discapacitados que se esta llevando a cabo gracias a la colaboración del Lic. Manuel Díaz Infante, Director General de Protección Civil


Asunto(s)
Personas con Discapacidad , Cultura , Protección Civil , Planificación en Desastres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...