Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466200

RESUMEN

Rho of Plant (ROP) GTPases function as molecular switches that control signaling processes essential for growth, development, and defense. However, their role in specialized metabolism is poorly understood. Previously, we demonstrated that inhibition of protein geranylgeranyl transferase (PGGT-I) negatively impacts the biosynthesis of monoterpenoid indole alkaloids (MIA) in Madagascar periwinkle (Catharanthus roseus), indicating the involvement of prenylated proteins in signaling. Here, we show through biochemical, molecular, and in planta approaches that specific geranylgeranylated ROPs modulate C. roseus MIA biosynthesis. Among the six C. roseus ROP GTPases (CrROPs), only CrROP3 and CrROP5, having a C-terminal CSIL motif, were specifically prenylated by PGGT-I. Additionally, their transcripts showed higher expression in most parts than other CrROPs. Protein-protein interaction studies revealed that CrROP3 and CrROP5, but not ΔCrROP3, ΔCrROP5, and CrROP2 lacking the CSIL motif, interacted with CrPGGT-I. Further, CrROP3 and CrROP5 exhibited nuclear localization, whereas CrROP2 was localized to the plasma membrane. In planta functional studies revealed that silencing of CrROP3 and CrROP5 negatively affected MIA biosynthesis, while their overexpression upregulated MIA formation. In contrast, silencing and overexpression of CrROP2 had no effect on MIA biosynthesis. Moreover, overexpression of ΔCrROP3 and ΔCrROP5 mutants devoid of sequence coding for the CSIL motif failed to enhance MIA biosynthesis. These results implicate that CrROP3 and CrROP5 have a positive regulatory role on MIA biosynthesis and thus shed light on how geranylgeranylated ROP GTPases mediate the modulation of specialized metabolism in C. roseus.

2.
J Exp Bot ; 75(1): 274-299, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804484

RESUMEN

Catharanthus roseus leaves produce a range of monoterpenoid indole alkaloids (MIAs) that include low levels of the anticancer drugs vinblastine and vincristine. The MIA pathway displays a complex architecture spanning different subcellular and cell type localizations, and is under complex regulation. As a result, the development of strategies to increase the levels of the anticancer MIAs has remained elusive. The pathway involves mesophyll specialized idioblasts where the late unsolved biosynthetic steps are thought to occur. Here, protoplasts of C. roseus leaf idioblasts were isolated by fluorescence-activated cell sorting, and their differential alkaloid and transcriptomic profiles were characterized. This involved the assembly of an improved C. roseus transcriptome from short- and long-read data, IDIO+. It was observed that C. roseus mesophyll idioblasts possess a distinctive transcriptomic profile associated with protection against biotic and abiotic stresses, and indicative that this cell type is a carbon sink, in contrast to surrounding mesophyll cells. Moreover, it is shown that idioblasts are a hotspot of alkaloid accumulation, suggesting that their transcriptome may hold the key to the in-depth understanding of the MIA pathway and the success of strategies leading to higher levels of the anticancer drugs.


Asunto(s)
Antineoplásicos , Catharanthus , Plantas Medicinales , Alcaloides de Triptamina Secologanina , Plantas Medicinales/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Antineoplásicos/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Commun Biol ; 6(1): 1197, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001233

RESUMEN

Monoterpene indole alkaloids (MIAs) are a structurally diverse family of specialized metabolites mainly produced in Gentianales to cope with environmental challenges. Due to their pharmacological properties, the biosynthetic modalities of several MIA types have been elucidated but not that of the yohimbanes. Here, we combine metabolomics, proteomics, transcriptomics and genome sequencing of Rauvolfia tetraphylla with machine learning to discover the unexpected multiple actors of this natural product synthesis. We identify a medium chain dehydrogenase/reductase (MDR) that produces a mixture of four diastereomers of yohimbanes including the well-known yohimbine and rauwolscine. In addition to this multifunctional yohimbane synthase (YOS), an MDR synthesizing mainly heteroyohimbanes and the short chain dehydrogenase vitrosamine synthase also display a yohimbane synthase side activity. Lastly, we establish that the combination of geissoschizine synthase with at least three other MDRs also produces a yohimbane mixture thus shedding light on the complex mechanisms evolved for the synthesis of these plant bioactives.


Asunto(s)
Rauwolfia , Rauwolfia/genética , Rauwolfia/metabolismo , Monoterpenos , Alcaloides Indólicos/metabolismo
5.
Protoplasma ; 260(2): 607-624, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35947213

RESUMEN

The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid-O-methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O-methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.


Asunto(s)
Alcaloides , Antineoplásicos , Catharanthus , Alcaloides/metabolismo , Regulación de la Expresión Génica de las Plantas , Metiltransferasas/genética , Metiltransferasas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética
6.
G3 (Bethesda) ; 12(12)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200869

RESUMEN

Vinca minor, also known as the lesser periwinkle, is a well-known species from the Apocynaceae, native to central and southern Europe. This plant synthesizes monoterpene indole alkaloids, which are a class of specialized metabolites displaying a wide range of bioactive- and pharmacologically important properties. Within the almost 50 monoterpene indole alkaloids it produces, V. minor mainly accumulates vincamine, which is commercially used as a nootropic. Using a combination of Oxford Nanopore Technologies long read- and Illumina short-read sequencing, a 679,098 Mb V. minor genome was assembled into 296 scaffolds with an N50 scaffold length of 6 Mb, and encoding 29,624 genes. These genes were functionally annotated and used in a comparative genomic analysis to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. Furthermore, homology-based monoterpene indole alkaloid gene predictions together with a metabolic analysis across 4 different V. minor tissue types guided the identification of candidate monoterpene indole alkaloid genes. These candidates were finally used to identify monoterpene indole alkaloid gene clusters, which combined with synteny analysis allowed for the discovery of a functionally validated vincadifformine-16-hydroxylase, reinforcing the potential of this dataset for monoterpene indole alkaloids gene discovery. It is expected that access to these resources will facilitate the elucidation of unknown monoterpene indole alkaloid biosynthetic routes with the potential of transferring these pathways to heterologous expression systems for large-scale monoterpene indole alkaloid production.


Asunto(s)
Vinca , Monoterpenos , Filogenia , Evolución Biológica , Fenotipo
7.
Methods Mol Biol ; 2505: 263-279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35732951

RESUMEN

Functional genomics analyses in planta can be hampered in non-model plants that are recalcitrant to the genetic transformation such as the medicinal plant Catharanthus roseus (Apocynaceae). No stable transformation and regeneration of plantlets have been achieved with a high efficiency in this plant to date. In addition, while virus-mediated transient gene silencing has been reported a decade ago in C. roseus, tools for transient overexpression remain scarce. Here, we describe an efficient and reliable methodology for transiently overexpressing any gene of interest in C. roseus leaves. This protocol combines a vacuum-based Agroinfiltration approach and the high translational efficiency of a deconstructed virus-based binary vector (pEAQ-HT). The described methodology is robust, easy to perform, and results in high amount of transient expression in C. roseus. This protocol is expected to serve as valuable tool to enhance the in planta characterization of gene functions or even transiently knock-in novel enzymatic activities.


Asunto(s)
Catharanthus , Catharanthus/genética , Catharanthus/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Vectores Genéticos/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Vacio
8.
Methods Mol Biol ; 2469: 193-200, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35508840

RESUMEN

Plant organs are built of different cell types, characterized by specific transcription programs and metabolic profiles. The possibility of isolation of such cell types to perform differential transcriptomic, proteomic and metabolomic analyses is highly important to understand many aspects of plant physiology, namely, the structure and regulation of economically valuable specialized metabolic pathways. Here, we describe the isolation of idioblast leaf protoplasts of the medicinal plant Catharanthus roseus by fluorescence-activated cell sorting, taking advantage of the differential autofluorescence properties of those specialized cells.


Asunto(s)
Catharanthus , Células Vegetales , Citometría de Flujo , Regulación de la Expresión Génica de las Plantas , Células Vegetales/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteómica
9.
Plant Cell Physiol ; 63(2): 200-216, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35166361

RESUMEN

Many plant species from the Apocynaceae, Loganiaceae and Rubiaceae families evolved a specialized metabolism leading to the synthesis of a broad palette of monoterpene indole alkaloids (MIAs). These compounds are believed to constitute a cornerstone of the plant chemical arsenal but above all several MIAs display pharmacological properties that have been exploited for decades by humans to treat various diseases. It is established that MIAs are produced in planta due to complex biosynthetic pathways engaging a multitude of specialized enzymes but also a complex tissue and subcellular organization. In this context, N-methyltransferases (NMTs) represent an important family of enzymes indispensable for MIA biosynthesis but their characterization has always remained challenging. In particular, little is known about the subcellular localization of NMTs in MIA-producing plants. Here, we performed an extensive analysis on the subcellular localization of NMTs from four distinct medicinal plants but also experimentally validated that two putative NMTs from Catharanthus roseus exhibit NMT activity. Apart from providing unprecedented data regarding the targeting of these enzymes in planta, our results point out an additional layer of complexity to the subcellular organization of the MIA biosynthetic pathway by introducing tonoplast and peroxisome as new actors of the final steps of MIA biosynthesis.


Asunto(s)
Catharanthus , Monoterpenos , Alcaloides Indólicos , Metiltransferasas , Peroxisomas , Proteínas de Plantas , gamma-Tocoferol
10.
Microb Biotechnol ; 14(6): 2693-2699, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34302444

RESUMEN

The pharmaceutical industry faces a growing demand and recurrent shortages in many anticancer plant drugs given their extensive use in human chemotherapy. Efficient alternative strategies of supply of these natural products such as bioproduction by microorganisms are needed to ensure stable and massive manufacturing. Here, we developed and optimized yeast cell factories efficiently converting tabersonine to vindoline, a precursor of the major anticancer alkaloids vinblastine and vincristine. First, fine-tuning of heterologous gene copies restrained side metabolites synthesis towards vindoline production. Tabersonine to vindoline bioconversion was further enhanced through a rational medium optimization (pH, composition) and a sequential feeding strategy. Finally, a vindoline titre of 266 mg l-1 (88% yield) was reached in an optimized fed-batch bioreactor. This precursor-directed synthesis of vindoline thus paves the way towards future industrial bioproduction through the valorization of abundant tabersonine resources.


Asunto(s)
Antineoplásicos , Catharanthus , Humanos , Saccharomyces cerevisiae/genética , Vinblastina/análogos & derivados
11.
Plant Physiol ; 185(3): 836-856, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793899

RESUMEN

Deglycosylation is a key step in the activation of specialized metabolites involved in plant defense mechanisms. This reaction is notably catalyzed by ß-glucosidases of the glycosyl hydrolase 1 (GH1) family such as strictosidine ß-d-glucosidase (SGD) from Catharanthus roseus. SGD catalyzes the deglycosylation of strictosidine, forming a highly reactive aglycone involved in the synthesis of cytotoxic monoterpene indole alkaloids (MIAs) and in the crosslinking of aggressor proteins. By exploring C. roseus transcriptomic resources, we identified an alternative splicing event of the SGD gene leading to the formation of a shorter isoform of this enzyme (shSGD) that lacks the last 71-residues and whose transcript ratio with SGD ranges from 1.7% up to 42.8%, depending on organs and conditions. Whereas it completely lacks ß-glucosidase activity, shSGD interacts with SGD and causes the disruption of SGD multimers. Such disorganization drastically inhibits SGD activity and impacts downstream MIA synthesis. In addition, shSGD disrupts the metabolic channeling of downstream biosynthetic steps by hampering the recruitment of tetrahydroalstonine synthase in cell nuclei. shSGD thus corresponds to a pseudo-enzyme acting as a regulator of MIA biosynthesis. These data shed light on a peculiar control mechanism of ß-glucosidase multimerization, an organization common to many defensive GH1 members.


Asunto(s)
Empalme Alternativo/fisiología , Catharanthus/metabolismo , Empalme Alternativo/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alcaloides de la Vinca/metabolismo
12.
ACS Synth Biol ; 10(2): 286-296, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33450150

RESUMEN

Trihydroxycinnamoyl spermidines (THCSpd) are plant specialized metabolites with promising pharmacological activities as antifungals, antibacterial, antiviral, and antidepressant drugs. However, their characterization and potential pharmaceutical exploitation are greatly impaired by the sourcing of these compounds, restricted to the pollen of core Eudicot plant species. In this work, we developed a precursor-directed biosynthesis of THCSpd in yeast using a dual enzymatic system based on 4-coumarate-CoA ligases (4CL) and spermidine N-hydroxycinnamoyltransferases (SHT). The system relies on the yeast endogenous spermidine pool and only requires hydroxycinnamic acids as exogenous precursors. By exploring 4CL isoforms and SHT diversity among plants, we have driven the production of 8 natural THCSpd, using single or mixed hydroxycinnamic acid precursors. Substrate promiscuities of 4CL and SHT were genuinely exploited to produce 8 new-to-nature THCSpd from exotic hydroxycinnamic and dihydrohydroxycinnamic acids, together with 3 new-to-nature THCSpd containing halogenated hydroxycinnamoyl moieties. In this work, we established a versatile and modular biotechnological production platform allowing the tailor-made THCSpd synthesis, constituting pioneer metabolic engineering for access to these valuable natural products.


Asunto(s)
Aciltransferasas/metabolismo , Ácidos Cumáricos/metabolismo , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espermidina/biosíntesis , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Coenzima A Ligasas/metabolismo , Plantones/enzimología
13.
Biomolecules ; 10(12)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255314

RESUMEN

The lesser periwinkle Vinca minor accumulates numerous monoterpene indole alkaloids (MIAs) including the vasodilator vincamine. While the biosynthetic pathway of MIAs has been largely elucidated in other Apocynaceae such as Catharanthus roseus, the counterpart in V. minor remains mostly unknown, especially for reactions leading to MIAs specific to this plant. As a consequence, we generated a comprehensive V. minor transcriptome elaborated from eight distinct samples including roots, old and young leaves exposed to low or high light exposure conditions. This optimized resource exhibits an improved completeness compared to already published ones. Through homology-based searches using C. roseus genes as bait, we predicted candidate genes for all common steps of the MIA pathway as illustrated by the cloning of a tabersonine/vincadifformine 16-O-methyltransferase (Vm16OMT) isoform. The functional validation of this enzyme revealed its capacity of methylating 16-hydroxylated derivatives of tabersonine, vincadifformine and lochnericine with a Km 0.94 ± 0.06 µM for 16-hydroxytabersonine. Furthermore, by combining expression of fusions with yellow fluorescent proteins and interaction assays, we established that Vm16OMT is located in the cytosol and forms homodimers. Finally, a gene co-expression network was performed to identify candidate genes of the missing V. minor biosynthetic steps to guide MIA pathway elucidation.


Asunto(s)
Catharanthus/genética , Regulación de la Expresión Génica de las Plantas/genética , Alcaloides de Triptamina Secologanina/metabolismo , Vinca/genética , Vinca/metabolismo , Catharanthus/metabolismo , Transcriptoma
14.
Methods Mol Biol ; 2172: 93-110, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32557364

RESUMEN

Monoterpene indole alkaloids (MIAs) are specialized metabolites synthesized in many plants of the Apocynaceae family including Catharanthus roseus and Rauvolfia sp. MIAs are part of the chemical arsenal that plants evolved to face pet and herbivore attacks, and their high biological activities also confer pharmaceutical properties exploited in human pharmacopeia. Developing robust and straightforward tools to elucidate each step of MIA biosynthetic pathways thus constitutes a prerequisite to the understanding of Apocynaceae defense mechanisms and to the exploitation of MIA cytotoxicity through their production by metabolic engineering. While protocols of virus-induced gene silencing (VIGS) based on Agrobacterium-based transformation have emerged, the recalcitrance of Apocynaceae to this type of transformation prompted us to develop an universal procedure of VIGS vector inoculation. Such procedure relies on the delivery of the transforming plasmids through a particle bombardment performed using a biolistic device and offers the possibility to overcome host specificity to silence genes in any plant species. Using silencing of geissoschizine oxidase as an example, we described the main steps of this biolistic mediated VIGS in C. roseus and R. tetraphylla.


Asunto(s)
Alcaloides/metabolismo , Apocynaceae/genética , Apocynaceae/metabolismo , Proteínas de Plantas/metabolismo , Biolística , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Silenciador del Gen/fisiología , Proteínas de Plantas/genética , Plásmidos/genética
15.
Curr Opin Biotechnol ; 65: 17-24, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31841858

RESUMEN

The discovery and supply of plant-derived anti-cancer compounds remain challenging given their low bioavailability and structural complexity. Reconstituting the pathways of these compounds in heterologous hosts is a promising solution; however, requires the complete elucidation of the biosynthetic genes involved and extensive metabolic engineering to optimise enzyme activity and metabolic flux. This review describes the current strategies and recent advancements in the production of these valuable therapeutic compounds, and highlights plant-derived immunomodulators as an emerging class of anti-cancer agents.


Asunto(s)
Antineoplásicos , Artemisininas , Vías Biosintéticas , Ingeniería Metabólica , Plantas/genética
16.
Plants (Basel) ; 8(12)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835814

RESUMEN

We have previously identified proteins in poplar which belong to an osmosensing (OS) signaling pathway, called a multistep phosphorelay (MSP). The MSP comprises histidine-aspartate kinases (HK), which act as membrane receptors; histidine phosphotransfer (HPt) proteins, which act as phosphorelay proteins; and response regulators (RR), some of which act as transcription factors. In this study, we identified the HK proteins homologous to the Arabidopsis cytokinin (CK) receptors, which are first partners in the poplar cytokinin MSP, and focused on specificity of these two MSPs (CK and OS), which seem to share the same pool of HPt proteins. Firstly, we isolated five CK HKs from poplar which are homologous to Arabidopsis AHK2, AHK3, and AHK4, namely, HK2, HK3a, HK3b, HK4a, HK4b. These HKs were shown to be functional kinases, as observed in a functional complementation of a yeast HK deleted strain. Moreover, one of these HKs, HK4a, was shown to have kinase activity dependent on the presence of CK. Exhaustive interaction tests between these five CK HKs and the 10 HPts characterized in poplar were performed using two-hybrid and BiFC experiments. The resulting partnership was compared to that previously identified between putative osmosensors HK1a/1b and HPt proteins. Finally, in planta coexpression analysis of genes encoding these potential partners revealed that almost all HPts are coexpressed with CK HKs in four different poplar organs. Overall, these results allowed us to unravel the common and specific partnerships existing between OS and CK MSP in Populus.

17.
Nat Chem Biol ; 14(8): 760-763, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29942076

RESUMEN

Cyclization reactions that create complex polycyclic scaffolds are hallmarks of alkaloid biosynthetic pathways. We present the discovery of three homologous cytochrome P450s from three monoterpene indole alkaloid-producing plants (Rauwolfia serpentina, Gelsemium sempervirens and Catharanthus roseus) that provide entry into two distinct alkaloid classes, the sarpagans and the ß-carbolines. Our results highlight how a common enzymatic mechanism, guided by related but structurally distinct substrates, leads to either cyclization or aromatization.


Asunto(s)
Catharanthus/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Gelsemium/enzimología , Alcaloides Indólicos/metabolismo , Rauwolfia/enzimología , Ciclización , Alcaloides Indólicos/química , Conformación Molecular , Estereoisomerismo , Especificidad por Sustrato
18.
Plant Physiol ; 177(4): 1473-1486, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29934299

RESUMEN

Lochnericine is a major monoterpene indole alkaloid (MIA) in the roots of Madagascar periwinkle (Catharanthus roseus). Lochnericine is derived from the stereoselective C6,C7-epoxidation of tabersonine and can be metabolized further to generate other complex MIAs. While the enzymes responsible for its downstream modifications have been characterized, those involved in lochnericine biosynthesis remain unknown. By combining gene correlation studies, functional assays, and transient gene inactivation, we identified two highly conserved P450s that efficiently catalyze the epoxidation of tabersonine: tabersonine 6,7-epoxidase isoforms 1 and 2 (TEX1 and TEX2). Both proteins are quite divergent from the previously characterized tabersonine 2,3-epoxidase and are more closely related to tabersonine 16-hydroxylase, involved in vindoline biosynthesis in leaves. Biochemical characterization of TEX1/2 revealed their strict substrate specificity for tabersonine and their inability to epoxidize 19-hydroxytabersonine, indicating that they catalyze the first step in the pathway leading to hörhammericine production. TEX1 and TEX2 displayed complementary expression profiles, with TEX1 expressed mainly in roots and TEX2 in aerial organs. Our results suggest that TEX1 and TEX2 originated from a gene duplication event and later acquired divergent, organ-specific regulatory elements for lochnericine biosynthesis throughout the plant, as supported by the presence of lochnericine in flowers. Finally, through the sequential expression of TEX1 and up to four other MIA biosynthetic genes in yeast, we reconstituted the 19-acetylhörhammericine biosynthetic pathway and produced tailor-made MIAs by mixing enzymatic modules that are naturally spatially separated in the plant. These results lay the groundwork for the metabolic engineering of tabersonine/lochnericine derivatives of pharmaceutical interest.


Asunto(s)
Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas de Plantas/metabolismo , Catharanthus/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Isoenzimas/genética , Isoenzimas/metabolismo , Ingeniería Metabólica/métodos , Microorganismos Modificados Genéticamente , Oxigenasas de Función Mixta/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Alcaloides de Triptamina Secologanina , Levaduras/genética , Levaduras/metabolismo
19.
Methods Mol Biol ; 1789: 33-54, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29916070

RESUMEN

Accurate and efficient demonstrations of protein localizations to the vacuole or tonoplast remain strict prerequisites to decipher the role of vacuoles in the whole plant cell biology and notably in defence processes. In this chapter, we describe a reliable procedure of protein subcellular localization study through transient transformations of Catharanthus roseus or onion cells and expression of fusions with fluorescent proteins allowing minimizing artefacts of targeting.


Asunto(s)
Proteínas Bacterianas/análisis , Catharanthus/citología , Proteínas Fluorescentes Verdes/análisis , Proteínas Luminiscentes/análisis , Cebollas/citología , Proteínas de Plantas/análisis , Vacuolas/ultraestructura , Proteínas Bacterianas/genética , Catharanthus/genética , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Luminiscentes/genética , Microscopía Fluorescente/métodos , Cebollas/genética , Proteínas de Plantas/genética , Transporte de Proteínas , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Transformación Genética , Vacuolas/química , Vacuolas/genética
20.
Methods Mol Biol ; 1789: 81-99, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29916073

RESUMEN

The isolation of vacuoles is an essential step to unravel the important and complex functions of this organelle in plant physiology. Here, we describe a method for the isolation of vacuoles from Catharanthus roseus leaves involving a simple procedure for the isolation of protoplasts, and the application of a controlled osmotic/thermal shock to the naked cells, leading to the release of intact vacuoles, which are subsequently purified by density gradient centrifugation. The purity of the isolated intact vacuoles is assayed by microscopy, western blotting, and measurement of vacuolar (V)-H+-ATPase hydrolytic activity. Finally, membrane functionality and integrity is evaluated by measuring the generation of a transtonoplast pH gradient by the V-H+-ATPase and the V-H+-pyrophosphatase, also producing further information on vacuole purity.


Asunto(s)
Catharanthus/citología , Fraccionamiento Celular/métodos , Hojas de la Planta/citología , Vacuolas/metabolismo , Vacuolas/ultraestructura , Bencenosulfonatos/análisis , Western Blotting/métodos , Catharanthus/metabolismo , Pruebas de Enzimas/métodos , Fluoresceínas/análisis , Colorantes Fluorescentes/análisis , Hidrólisis , Microscopía Fluorescente/métodos , Rojo Neutro/análisis , Imagen Óptica/métodos , Presión Osmótica , Hojas de la Planta/metabolismo , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Plantas Medicinales/citología , Plantas Medicinales/metabolismo , Protoplastos/citología , Protoplastos/metabolismo , Protoplastos/ultraestructura , Compuestos de Piridinio/análisis , Compuestos de Amonio Cuaternario/análisis , Coloración y Etiquetado/métodos , ATPasas de Translocación de Protón Vacuolares/análisis , ATPasas de Translocación de Protón Vacuolares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...