Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Healthcare (Basel) ; 11(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36766875

RESUMEN

Stress and stressors related to clinical practice are some of the main reasons for the discomfort reported by nursing students. It is important to identify the causes of stress and seek strategies to reduce the stress levels in nursing students. Clinical training seminars have proven to be a useful tool to reduce stress levels. This study aims to evaluate the effects of a series of clinical training seminars on the levels of stress and perception of stress factors before the start of clinical practice among undergraduate Spanish nursing students. A two-phase, sequential mixed-methods design was used. For the quantitative phase, data were collected using Cohen's Perceived Stress Scale and the KEZKAK questionnaire before and after the clinical training seminars. Qualitative data were collected through a focus group session held after the clinical training period. The results show a significant reduction (p = 0.002) in perceived stress levels after the clinical training seminars, and also a change in students' perception of stressors in the clinical placement. This study provides valuable information for the development of content for clinical training seminars. Universities should develop strategies to reduce stress in their students caused by the clinical placement.

2.
Fluids Barriers CNS ; 19(1): 88, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36345028

RESUMEN

BACKGROUND: While aging is the main risk factor for Alzheimer´s disease (AD), emerging evidence suggests that metabolic alterations such as type 2 diabetes (T2D) are also major contributors. Indeed, several studies have described a close relationship between AD and T2D with clinical evidence showing that both diseases coexist. A hallmark pathological event in AD is amyloid-ß (Aß) deposition in the brain as either amyloid plaques or around leptomeningeal and cortical arterioles, thus constituting cerebral amyloid angiopathy (CAA). CAA is observed in 85-95% of autopsy cases with AD and it contributes to AD pathology by limiting perivascular drainage of Aß. METHODS: To further explore these alterations when AD and T2D coexist, we have used in vivo multiphoton microscopy to analyze over time the Aß deposition in the form of plaques and CAA in a relevant model of AD (APPswe/PS1dE9) combined with T2D (db/db). We have simultaneously assessed the effects of high-fat diet-induced prediabetes in AD mice. Since both plaques and CAA are implicated in oxidative-stress mediated vascular damage in the brain, as well as in the activation of matrix metalloproteinases (MMP), we have also analyzed oxidative stress by Amplex Red oxidation, MMP activity by DQ™ Gelatin, and vascular functionality. RESULTS: We found that prediabetes accelerates amyloid plaque and CAA deposition, suggesting that initial metabolic alterations may directly affect AD pathology. T2D significantly affects vascular pathology and CAA deposition, which is increased in AD-T2D mice, suggesting that T2D favors vascular accumulation of Aß. Moreover, T2D synergistically contributes to increase CAA mediated oxidative stress and MMP activation, affecting red blood cell velocity. CONCLUSIONS: Our data support the cross-talk between metabolic disease and Aß deposition that affects vascular integrity, ultimately contributing to AD pathology and related functional changes in the brain microvasculature.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Diabetes Mellitus Tipo 2 , Estado Prediabético , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Estado Prediabético/complicaciones , Estado Prediabético/metabolismo , Estado Prediabético/patología , Angiopatía Amiloide Cerebral/metabolismo , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/complicaciones , Placa Amiloide/metabolismo , Placa Amiloide/patología , Encéfalo/metabolismo , Metaloproteinasas de la Matriz
3.
Front Cell Dev Biol ; 10: 908045, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035990

RESUMEN

Germinal matrix-intraventricular hemorrhage (GM-IVH) is the most frequent intracranial hemorrhage in the preterm infant (PT). Long-term GM-IVH-associated sequelae include cerebral palsy, sensory and motor impairment, learning disabilities, or neuropsychiatric disorders. The societal and health burden associated with GM-IVH is worsened by the fact that there is no successful treatment to limit or reduce brain damage and neurodevelopment disabilities. Caffeine (Caf) is a methylxanthine that binds to adenosine receptors, regularly used to treat the apnea of prematurity. While previous studies support the beneficial effects at the brain level of Caf in PT, there are no studies that specifically focus on the role of Caf in GM-IVH. Therefore, to further understand the role of Caf in GM-IVH, we have analyzed two doses of Caf (10 and 20 mg/kg) in a murine model of the disease. We have analyzed the short (P14) and long (P70) effects of the treatment on brain atrophy and neuron wellbeing, including density, curvature, and phospho-tau/total tau ratio. We have analyzed proliferation and neurogenesis, as well as microglia and hemorrhage burdens. We have also assessed the long-term effects of Caf treatment at cognitive level. To induce GM-IVH, we have administered intraventricular collagenase to P7 CD1 mice and have analyzed these animals in the short (P14) and long (P70) term. Caf showed a general neuroprotective effect in our model of GM-IVH of the PT. In our study, Caf administration diminishes brain atrophy and ventricle enlargement. Likewise, Caf limits neuronal damage, including neurite curvature and tau phosphorylation. It also contributes to maintaining neurogenesis in the subventricular zone, a neurogenic niche that is severely affected after GM-IVH. Furthermore, Caf ameliorates small vessel bleeding and inflammation in both the cortex and the subventricular zone. Observed mitigation of brain pathological features commonly associated with GM-IVH also results in a significant improvement of learning and memory abilities in the long term. Altogether, our data support the promising effects of Caf to reduce central nervous system complications associated with GM-IVH.

4.
Trends Endocrinol Metab ; 33(1): 50-71, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34794851

RESUMEN

Type 2 diabetes (T2D) is associated with multiple comorbidities, including diabetic retinopathy (DR) and cognitive decline, and T2D patients have a significantly higher risk of developing Alzheimer's disease (AD). Both DR and AD are characterized by a number of pathological mechanisms that coalesce around the neurovascular unit, including neuroinflammation and degeneration, vascular degeneration, and glial activation. Chronic hyperglycemia and insulin resistance also play a significant role, leading to activation of pathological mechanisms such as increased oxidative stress and the accumulation of advanced glycation end-products (AGEs). Understanding these common pathways and the degree to which they occur simultaneously in the brain and retina during diabetes will provide avenues to identify T2D patients at risk of cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/etiología , Diabetes Mellitus Tipo 2/complicaciones , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Productos Finales de Glicación Avanzada/metabolismo , Humanos
5.
Alzheimers Res Ther ; 13(1): 112, 2021 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-34118986

RESUMEN

BACKGROUND: The described relationship between Alzheimer's disease (AD) and type 2 diabetes (T2D) and the fact that AD has no succesful treatment has led to the study of antidiabetic drugs that may limit or slow down AD pathology. MAIN BODY: Although T2D treatment has evident limitations, options are increasing including glucagon-like peptide 1 analogs. Among these, liraglutide (LRGT) is commonly used by T2D patients to improve ß cell function and suppress glucagon to restore normoglycaemia. Interestingly, LRGT also counterbalances altered brain metabolism and has anti-inflammatory properties. Previous studies have reported its capacity to reduce AD pathology, including amyloid production and deposition, tau hyperphosphorylation, or neuronal and synaptic loss in animal models of AD, accompanied by cognitive improvement. Given the beneficial effects of LRGT at central level, studies in patients have been carried out, showing modest beneficial effects. At present, the ELAD trial (Evaluating Liraglutide in Alzheimer's Disease NCT01843075) is an ongoing phase IIb study in patients with mild AD. In this minireview, we resume the outcomes of LRGT treatment in preclinical models of AD as well as the available results in patients up to date. CONCLUSION: The effects of LRGT on animal models show significant benefits in AD pathology and cognitive impairment. While studies in patients are limited, ongoing clinical trials will probably provide more definitive conclusions on the role of LRGT in AD patients.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Humanos , Hipoglucemiantes/uso terapéutico , Liraglutida/uso terapéutico , Proteínas tau
6.
Biomolecules ; 11(2)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578998

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia. Epidemiological studies show the association between AD and type 2 diabetes (T2DM), although the mechanisms are not fully understood. Dietary habits and lifestyle, that are risk factors in both diseases, strongly modulate gut microbiota composition. Also, the brain-gut axis plays a relevant role in AD, diabetes and inflammation, through products of bacterial metabolism, like short-chain fatty acids. We provide a comprehensive review of current literature on the relation between dysbiosis, altered inflammatory cytokines profile and microglia in preclinical models of AD, T2DM and models that reproduce both diseases as commonly observed in the clinic. Increased proinflammatory cytokines, such as IL-1ß and TNF-α, are widely detected. Microbiome analysis shows alterations in Actinobacteria, Bacteroidetes or Firmicutes phyla, among others. Altered α- and ß-diversity is observed in mice depending on genotype, gender and age; therefore, alterations in bacteria taxa highly depend on the models and approaches. We also review the use of pre- and probiotic supplements, that by favoring a healthy microbiome ameliorate AD and T2DM pathologies. Whereas extensive studies have been carried out, further research would be necessary to fully understand the relation between diet, microbiome and inflammation in AD and T2DM.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Complicaciones de la Diabetes/metabolismo , Dieta , Microbiota , Actinobacteria/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/microbiología , Animales , Bacteroidetes/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/microbiología , Modelos Animales de Enfermedad , Firmicutes/metabolismo , Microbioma Gastrointestinal , Humanos , Inflamación , Estilo de Vida , Ratones , Estado Prediabético/metabolismo , Estado Prediabético/microbiología , Probióticos , Factores de Riesgo
7.
Front Aging Neurosci ; 13: 741923, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975451

RESUMEN

Alzheimer's disease is the most common form of dementia, and epidemiological studies support that type 2 diabetes (T2D) is a major contributor. The relationship between both diseases and the fact that Alzheimer's disease (AD) does not have a successful treatment support the study on antidiabetic drugs limiting or slowing down brain complications in AD. Among these, liraglutide (LRGT), a glucagon-like peptide-1 agonist, is currently being tested in patients with AD in the Evaluating Liraglutide in Alzheimer's Disease (ELAD) clinical trial. However, the effects of LRGT on brain pathology when AD and T2D coexist have not been assessed. We have administered LRGT (500 µg/kg/day) to a mixed murine model of AD and T2D (APP/PS1xdb/db mice) for 20 weeks. We have evaluated metabolic parameters as well as the effects of LRGT on learning and memory. Postmortem analysis included assessment of brain amyloid-ß and tau pathologies, microglia activation, spontaneous bleeding and neuronal loss, as well as insulin and insulin-like growth factor 1 receptors. LRGT treatment reduced glucose levels in diabetic mice (db/db and APP/PS1xdb/db) after 4 weeks of treatment. LRGT also helped to maintain insulin levels after 8 weeks of treatment. While we did not detect any effects on cortical insulin or insulin-like growth factor 1 receptor m-RNA levels, LRGT significantly reduced brain atrophy in the db/db and APP/PS1xdb/db mice. LRGT treatment also rescued neuron density in the APP/PS1xdb/db mice in the proximity (p = 0.008) far from amyloid plaques (p < 0.001). LRGT reduced amyloid plaque burden in the APP/PS1 animals (p < 0.001), as well as Aß aggregates levels (p = 0.046), and tau hyperphosphorylation (p = 0.009) in the APP/PS1xdb/db mice. Spontaneous bleeding was also ameliorated in the APP/PS1xdb/db animals (p = 0.012), and microglia burden was reduced in the proximity of amyloid plaques in the APP/PS1 and APP/PS1xdb/db mice (p < 0.001), while microglia was reduced in areas far from amyloid plaques in the db/db and APP/PS1xdb/db mice (p < 0.001). This overall improvement helped to rescue cognitive impairment in AD-T2D mice in the new object discrimination test (p < 0.001) and Morris water maze (p < 0.001). Altogether, our data support the role of LRGT in reduction of associated brain complications when T2D and AD occur simultaneously, as regularly observed in the clinical arena.

8.
Alzheimers Res Ther ; 12(1): 40, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32264944

RESUMEN

BACKGROUND: Both Alzheimer's disease (AD) and type 2 diabetes (T2D) share common pathological features including inflammation, insulin signaling alterations, or vascular damage. AD has no successful treatment, and the close relationship between both diseases supports the study of antidiabetic drugs to limit or slow down brain pathology in AD. Empagliflozin (EMP) is a sodium-glucose co-transporter 2 inhibitor, the newest class of antidiabetic agents. EMP controls hyperglycemia and reduces cardiovascular comorbidities and deaths associated to T2D. Therefore, we have analyzed the role of EMP at the central level in a complex mouse model of AD-T2D. METHODS: We have treated AD-T2D mice (APP/PS1xdb/db mice) with EMP 10 mg/kg for 22 weeks. Glucose, insulin, and body weight were monthly assessed. We analyzed learning and memory in the Morris water maze and the new object discrimination test. Postmortem brain assessment was conducted to measure brain atrophy, senile plaques, and amyloid-ß levels. Tau phosphorylation, hemorrhage burden, and microglia were also measured in the brain after EMP treatment. RESULTS: EMP treatment helped to maintain insulin levels in diabetic mice. At the central level, EMP limited cortical thinning and reduced neuronal loss in treated mice. Hemorrhage and microglia burdens were also reduced in EMP-treated mice. Senile plaque burden was lower, and these effects were accompanied by an amelioration of cognitive deficits in APP/PS1xdb/db mice. CONCLUSIONS: Altogether, our data support a feasible role for EMP to reduce brain complications associated to AD and T2D, including classical pathological features and vascular disease, and supporting further assessment of EMP at the central level.


Asunto(s)
Enfermedad de Alzheimer , Compuestos de Bencidrilo , Disfunción Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Glucósidos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Compuestos de Bencidrilo/uso terapéutico , Encéfalo/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Glucósidos/uso terapéutico , Masculino , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...