Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38746081

RESUMEN

Mutations in FGF14 , which encodes intracellular fibroblast growth factor 14 (iFGF14), have been linked to spinocerebellar ataxia type 27 (SCA27), a multisystem disorder associated with progressive deficits in motor coordination and cognitive function. Mice ( Fgf14 -/- ) lacking iFGF14 display similar phenotypes, and we have previously shown that the deficits in motor coordination reflect reduced excitability of cerebellar Purkinje neurons, owing to the loss of iFGF14-mediated regulation of the voltage-dependence of inactivation of the fast transient component of the voltage-gated Na + (Nav) current, I NaT . Here, we present the results of experiments designed to test the hypothesis that loss of iFGF14 also attenuates the intrinsic excitability of mature hippocampal and cortical pyramidal neurons. Current-clamp recordings from adult mouse hippocampal CA1 pyramidal neurons in acute in vitro slices, however, revealed that repetitive firing rates were higher in Fgf14 -/- , than in wild type (WT), cells. In addition, the waveforms of individual action potentials were altered in Fgf14 -/- hippocampal CA1 pyramidal neurons, and the loss of iFGF14 reduced the time delay between the initiation of axonal and somal action potentials. Voltage-clamp recordings revealed that the loss of iFGF14 altered the voltage-dependence of activation, but not inactivation, of I NaT in CA1 pyramidal neurons. Similar effects of the loss of iFGF14 on firing properties were evident in current-clamp recordings from layer 5 visual cortical pyramidal neurons. Additional experiments demonstrated that the loss of iFGF14 does not alter the distribution of anti-Nav1.6 or anti-ankyrin G immunofluorescence labeling intensity along the axon initial segments (AIS) of mature hippocampal CA1 or layer 5 visual cortical pyramidal neurons in situ . Taken together, the results demonstrate that, in contrast with results reported for neonatal (rat) hippocampal pyramidal neurons in dissociated cell culture, the loss of iFGF14 does not disrupt AIS architecture or Nav1.6 localization/distribution along the AIS of mature hippocampal (or cortical) pyramidal neurons in situ .

2.
eNeuro ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331576

RESUMEN

The transition from acute to chronic pain involves maladaptive plasticity in central nociceptive pathways. Growing evidence suggests that changes within the parabrachial nucleus (PBN), an important component of the spino-parabrachio-amygdaloid pain pathway, are key contributors to the development and maintenance of chronic pain. In animal models of chronic pain, PBN neurons become sensitive to normally innocuous stimuli and responses to noxious stimuli become amplified and more often produce after-discharges that outlast the stimulus. Using ex vivo slice electrophysiology and two mouse models of neuropathic pain, sciatic cuff and chronic constriction of the infraorbital nerve (CCI-ION), we find that changes in the firing properties of PBN neurons and a shift in inhibitory synaptic transmission may underlie this phenomenon. Compared to PBN neurons from shams, a larger proportion of PBN neurons from mice with a sciatic cuff were spontaneously active at rest, and these same neurons showed increased excitability relative to shams. In contrast, quiescent PBN neurons from cuff mice were less excitable than those from shams. Despite an increase in excitability in a subset of PBN neurons, the presence of after-discharges frequently observed in vivo were largely absent ex vivo in both injury models. However, GABAB-mediated presynaptic inhibition of GABAergic terminals is enhanced in PBN neurons after CCI-ION. These data suggest that the amplified activity of PBN neurons observed in rodent models of chronic pain arise through a combination of changes in firing properties and network excitability.Significance Statement Hyperactivity of neurons in the parabrachial nucleus (PBN) is causally linked to exaggerated pain behaviors in rodent models of chronic pain but the underlying mechanisms remain unknown. Using two mouse models of neuropathic pain, we show the intrinsic properties of PBN neurons are largely unaltered following injury. However, subsets of PBN neurons become more excitable and GABAB receptor mediated suppression of inhibitory terminals is enhanced after injury. Thus, shifts in network excitability may be a contributing factor in injury induced potentiation of PBN activity.

3.
J Inflamm (Lond) ; 21(1): 2, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267952

RESUMEN

4R is a tobacco cembranoid that binds to and modulates cholinergic receptors and exhibits neuroprotective and anti-inflammatory activity. Given the established function of the cholinergic system in pain and inflammation, we propose that 4R is also analgesic. Here, we tested the hypothesis that systemic 4R treatment decreases pain-related behaviors and peripheral inflammation via modulation of the alpha 7 nicotinic acetylcholine receptors (α7 nAChRs) in a mouse model of inflammatory pain. We elicited inflammation by injecting Complete Freund's Adjuvant (CFA) into the hind paw of male and female mice. We then assessed inflammation-induced hypersensitivity to cold, heat, and tactile stimulation using the Acetone, Hargreaves, and von Frey tests, respectively, before and at different time points (2.5 h - 8d) after a single systemic 4R (or vehicle) administration. We evaluated the contribution of α7 nAChRs 4R-mediated analgesia by pre-treating mice with a selective antagonist of α7 nAChRs followed by 4R (or vehicle) administration prior to behavioral tests. We assessed CFA-induced paw edema and inflammation by measuring paw thickness and quantifying immune cell infiltration in the injected hind paw using hematoxylin and eosin staining. Lastly, we performed immunohistochemical and flow cytometric analyses of paw skin in α7 nAChR-cre::Ai9 mice to measure the expression of α7 nAChRs on immune subsets. Our experiments show that systemic administration of 4R decreases inflammation-induced peripheral hypersensitivity in male and female mice and inflammation-induced paw edema in male but not female mice. Notably, 4R-mediated analgesia and anti-inflammatory effects lasted up to 8d after a single systemic administration on day 1. Pretreatment with an α7 nAChR-selective antagonist prevented 4R-mediated analgesia and anti-inflammatory effects, demonstrating that 4R effects are via modulation of α7 nAChRs. We further show that a subset of immune cells in the hind paw expresses α7 nAChRs. However, the number of α7 nAChR-expressing immune cells is unaltered by CFA or 4R treatment, suggesting that 4R effects are independent of α7 nAChR-expressing immune cells. Together, our findings identify a novel function of the 4R tobacco cembranoid as an analgesic agent in both male and female mice that reduces peripheral inflammation in a sex-dependent manner, further supporting the pharmacological targeting of the cholinergic system for pain treatment.

4.
Neuropsychopharmacology ; 49(3): 508-520, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37542159

RESUMEN

The spino-ponto-amygdaloid pathway is a major ascending circuit relaying nociceptive information from the spinal cord to the brain. Potentiation of excitatory synaptic transmission in the parabrachial nucleus (PBN) to central amygdala (CeA) pathway has been reported in rodent models of persistent pain. However, the functional significance of this pathway in the modulation of the somatosensory component of pain was recently challenged by studies showing that spinal nociceptive neurons do not target CeA-projecting PBN cells and that manipulations of this pathway have no effect on reflexive-defensive somatosensory responses to peripheral noxious stimulation. Here, we showed that activation of CeA-projecting PBN neurons is critical to increase both stimulus-evoked and spontaneous nociceptive responses following an injury in male and female mice. Using optogenetic-assisted circuit mapping, we confirmed a functional excitatory projection from PBN→CeA that is independent of the genetic or firing identity of CeA cells. We then showed that peripheral noxious stimulation increased the expression of the neuronal activity marker Fos in CeA-projecting PBN neurons and that chemogenetic inactivation of these cells decreased behavioral hypersensitivity in models of neuropathic and inflammatory pain without affecting baseline nociception. Lastly, we showed that chemogenetic activation of CeA-projecting PBN neurons is sufficient to induced bilateral hypersensitivity without injury. Together, our results indicate that the PBN→CeA pathway is a key modulator of pain-related behaviors that can increase reflexive-defensive and affective-motivational responses to somatosensory stimulation in injured states without affecting nociception under normal physiological conditions.


Asunto(s)
Núcleo Amigdalino Central , Núcleos Parabraquiales , Ratones , Masculino , Femenino , Animales , Dolor , Núcleos Parabraquiales/fisiología , Neuronas/fisiología , Transmisión Sináptica
5.
bioRxiv ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37905065

RESUMEN

The transition from acute to chronic pain involves maladaptive plasticity in central nociceptive pathways. Growing evidence suggests that changes within the parabrachial nucleus (PBN), an important component of the spino-parabrachio-amygdaloid pain pathway, are key contributors to the development and maintenance of chronic pain. In animal models of chronic pain, PBN neurons become sensitive to normally innocuous stimuli and responses to noxious stimuli become amplified and more often produce after-discharges that outlast the stimulus. Using ex vivo slice electrophysiology and two mouse models of neuropathic pain, sciatic cuff and chronic constriction of the infraorbital nerve (CCI-ION), we find that changes in the firing properties of PBN neurons and a shift in inhibitory synaptic transmission may underlie this phenomenon. Compared to PBN neurons from shams, a larger proportion of PBN neurons from mice with a sciatic cuff were spontaneously active at rest, and these same neurons showed increased excitability relative to shams. In contrast, quiescent PBN neurons from cuff mice were less excitable than those from shams. Despite an increase in excitability in a subset of PBN neurons, the presence of after-discharges frequently observed in vivo were largely absent ex vivo in both injury models. However, GABAB-mediated presynaptic inhibition of GABAergic terminals is enhanced in PBN neurons after CCIION. These data suggest that the amplified activity of PBN neurons observed in rodent models of chronic pain arise through a combination of changes in firing properties and network excitability.

6.
bioRxiv ; 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36945586

RESUMEN

The spino-ponto-amygdaloid pathway is a major ascending circuit relaying nociceptive information from the spinal cord to the brain. Potentiation of excitatory synaptic transmission in the parabrachial nucleus (PbN) to central amygdala (CeA) pathway has been reported in rodent models of persistent pain. At the behavioral level, the PbN→CeA pathway has been proposed to serve as a general alarm system to potential threats that modulates pain-related escape behaviors, threat memory, aversion, and affective-motivational (but not somatosensory) responses to painful stimuli. Increased sensitivity to previously innocuous somatosensory stimulation is a hallmark of chronic pain. Whether the PbN→CeA circuit contributes to heightened peripheral sensitivity following an injury, however, remains unknown. Here, we demonstrate that activation of CeA-projecting PbN neurons contributes to injury-induced behavioral hypersensitivity but not baseline nociception in male and female mice. Using optogenetic assisted circuit mapping, we confirmed a functional excitatory projection from PbN→CeA that is independent of the genetic or firing identity of CeA cells. We then showed that peripheral noxious stimulation increases the expression of the neuronal activity marker c-Fos in CeA-projecting PbN neurons and chemogenetic inactivation of these cells reduces behavioral hypersensitivity in models of neuropathic and inflammatory pain without affecting baseline nociception. Lastly, we show that chemogenetic activation of CeA-projecting PbN neurons is sufficient to induce bilateral hypersensitivity without injury. Together, our results demonstrate that the PbN→CeA pathway is a key modulator of pain-related behaviors that can amplify responses to somatosensory stimulation in pathological states without affecting nociception under normal physiological conditions. Significance Statement: Early studies identified the spino-ponto-amygdaloid pathway as a major ascending circuit conveying nociceptive inputs from the spinal cord to the brain. The functional significance of this circuit to injury-induced hypersensitivity, however, remains unknown. Here, we addressed this gap in knowledge using viral-mediated anatomical tracers, ex-vivo electrophysiology and chemogenetic intersectional approaches in rodent models of persistent pain. We found that activation of this pathway contributes to injury-induced hypersensitivity, directly demonstrating a critical function of the PbN→CeA circuit in pain modulation.

7.
Pain ; 164(1): 197-215, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35559931

RESUMEN

ABSTRACT: Previous studies have reported sex differences in patients with irritable bowel syndrome and inflammatory bowel disease, including differences in visceral pain perception. Despite this, sex differences in behavioral manifestations of visceral pain and underlying pathology of the gastrointestinal tract have been largely understudied in preclinical research. In this study, we evaluated potential sex differences in spontaneous nociceptive responses, referred abdominal hypersensitivity, disease progression, and bowel pathology in mouse models of acute and persistent colon inflammation. Our experiments show that females exhibit more nociceptive responses and referred abdominal hypersensitivity than males in the context of acute but not persistent colon inflammation. We further demonstrate that, after acute and persistent colon inflammation, pain-related behavioral responses in females and males are distinct, with increases in licking of the abdomen only observed in females and increases in abdominal contractions only seen in males. During persistent colon inflammation, males exhibit worse disease progression than females, which is manifested as worse physical appearance and higher weight loss. However, no measurable sex differences were observed in persistent inflammation-induced bowel pathology, stool consistency, or fecal blood. Overall, our findings demonstrate sex differences in pain-related behaviors and disease progression in the context of acute and persistent colon inflammation, highlighting the importance of considering sex as a biological variable in future mechanistic studies of visceral pain as well as in the development of diagnostics and therapeutic options for chronic gastrointestinal diseases.


Asunto(s)
Colitis , Síndrome del Colon Irritable , Dolor Visceral , Ratones , Animales , Femenino , Masculino , Dolor Visceral/patología , Caracteres Sexuales , Colon , Síndrome del Colon Irritable/complicaciones , Colitis/patología , Inflamación/patología , Progresión de la Enfermedad , Modelos Animales de Enfermedad
8.
Biol Psychiatry ; 93(4): 370-381, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36473754

RESUMEN

BACKGROUND: The central amygdala (CeA) is a bilateral hub of pain and emotional processing with well-established functional lateralization. We reported that optogenetic manipulation of neural activity in the left and right CeA has opposing effects on bladder pain. METHODS: To determine the influence of calcitonin gene-related peptide (CGRP) signaling from the parabrachial nucleus on this diametrically opposed lateralization, we administered CGRP and evaluated the activity of CeA neurons in acute brain slices as well as the behavioral signs of bladder pain in the mouse. RESULTS: We found that CGRP increased firing in both the right and left CeA neurons. Furthermore, we found that CGRP administration in the right CeA increased behavioral signs of bladder pain and decreased bladder pain-like behavior when administered in the left CeA. CONCLUSIONS: These studies reveal a parabrachial-to-amygdala circuit driven by opposing actions of CGRP that determines hemispheric lateralization of visceral pain.


Asunto(s)
Núcleo Amigdalino Central , Núcleos Parabraquiales , Ratones , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Dolor , Núcleo Amigdalino Central/metabolismo , Neuronas/fisiología , Emociones , Núcleos Parabraquiales/metabolismo
9.
Elife ; 112022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36269044

RESUMEN

Central amygdala neurons expressing protein kinase C-delta (CeA-PKCδ) are sensitized following nerve injury and promote pain-related responses in mice. The neural circuits underlying modulation of pain-related behaviors by CeA-PKCδ neurons, however, remain unknown. In this study, we identified a neural circuit that originates in CeA-PKCδ neurons and terminates in the ventral region of the zona incerta (ZI), a subthalamic structure previously linked to pain processing. Behavioral experiments show that chemogenetic inhibition of GABAergic ZI neurons induced bilateral hypersensitivity in uninjured mice and contralateral hypersensitivity after nerve injury. In contrast, chemogenetic activation of GABAergic ZI neurons reversed nerve injury-induced hypersensitivity. Optogenetic manipulations of CeA-PKCδ axonal terminals in the ZI further showed that inhibition of this pathway reduces nerve injury-induced hypersensitivity whereas activation of the pathway produces hypersensitivity in the uninjured paws. Altogether, our results identify a novel nociceptive inhibitory efferent pathway from CeA-PKCδ neurons to the ZI that bidirectionally modulates pain-related behaviors in mice.


Asunto(s)
Núcleo Amigdalino Central , Zona Incerta , Animales , Ratones , Zona Incerta/fisiología , Dolor , Neuronas GABAérgicas/fisiología , Optogenética
10.
PLoS Comput Biol ; 17(6): e1009097, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34101729

RESUMEN

The amygdala is a brain area involved in emotional regulation and pain. Over the course of the last 20 years, multiple researchers have studied sensory and motor connections within the amygdala in trying to understand the ultimate role of this structure in pain perception and descending control of pain. A number of investigators have been using cell-type specific manipulations to probe the underlying circuitry of the amygdala. As data have accumulated in this research space, we recognized a critical need for a single framework to integrate these data and evaluate emergent system-level responses. In this manuscript, we present an agent-based computational model of two distinct inhibitory neuron populations in the amygdala, those that express protein kinase C delta (PKCδ) and those that express somatostatin (SOM). We utilized a network of neural links to simulate connectivity and the transmission of inhibitory signals between neurons. Type-specific parameters describing the response of these neurons to noxious stimuli were estimated from published physiological and immunological data as well as our own wet-lab experiments. The model outputs an abstract measure of pain, which is calculated in terms of the cumulative pro-nociceptive and anti-nociceptive activity across neurons in both hemispheres of the amygdala. Results demonstrate the ability of the model to produce changes in pain that are consistent with published studies and highlight the importance of several model parameters. In particular, we found that the relative proportion of PKCδ and SOM neurons within each hemisphere is a key parameter in predicting pain and we explored model predictions for three possible values of this parameter. We compared model predictions of pain to data from our earlier behavioral studies and found areas of similarity as well as distinctions between the data sets. These differences, in particular, suggest a number of wet-lab experiments that could be done in the future.


Asunto(s)
Núcleo Amigdalino Central/fisiología , Modelos Neurológicos , Dolor/fisiopatología , Animales , Núcleo Amigdalino Central/lesiones , Núcleo Amigdalino Central/fisiopatología , Biología Computacional , Modelos Animales de Enfermedad , Dominancia Cerebral/fisiología , Fenómenos Electrofisiológicos , Humanos , Técnicas In Vitro , Masculino , Ratones , Red Nerviosa/fisiología , Red Nerviosa/fisiopatología , Neuralgia/fisiopatología , Neuronas/clasificación , Neuronas/fisiología , Proteína Quinasa C-delta/metabolismo , Somatostatina/metabolismo , Análisis de Sistemas
11.
eNeuro ; 8(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33188006

RESUMEN

Central amygdala (CeA) neurons expressing protein kinase Cδ (PKCδ+) or somatostatin (Som+) differentially modulate diverse behaviors. The underlying features supporting cell-type-specific function in the CeA, however, remain unknown. Using whole-cell patch-clamp electrophysiology in acute mouse brain slices and biocytin-based neuronal reconstructions, we demonstrate that neuronal morphology and relative excitability are two distinguishing features between Som+ and PKCδ+ neurons in the laterocapsular subdivision of the CeA (CeLC). Som+ neurons, for example, are more excitable, compact, and with more complex dendritic arborizations than PKCδ+ neurons. Cell size, intrinsic membrane properties, and anatomic localization were further shown to correlate with cell-type-specific differences in excitability. Lastly, in the context of neuropathic pain, we show a shift in the excitability equilibrium between PKCδ+ and Som+ neurons, suggesting that imbalances in the relative output of these cells underlie maladaptive changes in behaviors. Together, our results identify fundamentally important distinguishing features of PKCδ+ and Som+ cells that support cell-type-specific function in the CeA.


Asunto(s)
Núcleo Amigdalino Central , Neuralgia , Animales , Núcleo Amigdalino Central/metabolismo , Ratones , Neuronas/metabolismo , Proteína Quinasa C-delta/metabolismo , Somatostatina/metabolismo
12.
Cell Rep ; 29(2): 332-346.e5, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597095

RESUMEN

Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain.


Asunto(s)
Núcleo Amigdalino Central/fisiopatología , Neuralgia/fisiopatología , Animales , Activación Enzimática , Femenino , Hipersensibilidad/complicaciones , Hipersensibilidad/fisiopatología , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Modelos Neurológicos , Tejido Nervioso/lesiones , Neuralgia/complicaciones , Neuronas/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/patología , Temperatura , Tacto
14.
J Biol Rhythms ; 31(1): 57-67, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26712166

RESUMEN

The suprachiasmatic nucleus (SCN) regulates daily rhythms in physiology and behavior. Previous studies suggest a critical role for neurons expressing vasoactive intestinal peptide (VIP) in coordinating rhythmicity and synchronization in the SCN. Here we examined the firing properties of VIP-expressing SCN neurons in acute brain slices. Active and passive membrane properties were measured in VIP and in non-VIP neurons during the day and at night. Current-clamp recordings revealed that both VIP and non-VIP neurons were spontaneously active, with higher firing rates during the day than at night. Average firing frequencies, however, were higher in VIP neurons (3.1 ± 0.2 Hz, day and 2.4 ± 0.2 Hz, night) than in non-VIP neurons (1.8 ± 0.2 Hz, day and 0.9 ± 0.2 Hz, night), both day and night. The waveforms of individual action potentials in VIP and non-VIP neurons were also distinct. Action potential durations (APD50) were shorter in VIP neurons (3.6 ± 0.1 ms, day and 2.9 ± 0.1 ms, night) than in non-VIP neurons (4.4 ± 0.3 ms, day and 3.5 ± 0.2 ms, night) throughout the light-dark cycle. In addition, afterhyperpolarization (AHP) amplitudes were larger in VIP neurons (21 ± 0.8 mV, day and 24.9 ± 0.9 mV, night) than in non-VIP neurons (17.2 ± 1.1 mV, day and 20.5 ± 1.2 mV, night) during the day and at night. Furthermore, significant day/night differences were observed in APD50 and AHP amplitudes in both VIP and non-VIP SCN neurons, consistent with rhythmic changes in ionic conductances that contribute to shaping the firing properties of both cell types. The higher day and night firing rates of VIP neurons likely contribute to synchronizing electrical activity in the SCN.


Asunto(s)
Neuronas/fisiología , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Potenciales de Acción , Animales , Ritmo Circadiano , Ratones , Fotoperiodo , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/genética
15.
J Biol Rhythms ; 30(5): 396-407, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26152125

RESUMEN

Neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in mammals, display daily rhythms in electrical activity with more depolarized resting potentials and higher firing rates during the day than at night. Although these daily variations in the electrical properties of SCN neurons are required for circadian rhythms in physiology and behavior, the mechanisms linking changes in neuronal excitability to the molecular clock are not known. Recently, we reported that mice deficient for either Kcna4 (Kv1.4(-/-)) or Kcnd2 (Kv4.2(-/-); but not Kcnd3, Kv4.3(-/-)), voltage-gated K(+) (Kv) channel pore-forming subunits that encode subthreshold, rapidly activating, and inactivating K(+) currents (IA), have shortened (0.5 h) circadian periods in SCN firing and in locomotor activity compared with wild-type (WT) mice. In the experiments here, we used a mouse (Per2(Luc)) line engineered with a bioluminescent reporter construct, PERIOD2::LUCIFERASE (PER2::LUC), replacing the endogenous Per2 locus, to test the hypothesis that the loss of Kv1.4- or Kv4.2-encoded IA channels also modifies circadian rhythms in the expression of the clock protein PERIOD2 (PER2). We found that SCN explants from Kv1.4(-/-)Per2(Luc) and Kv4.2(-/-) Per2(Luc), but not Kv4.3(-/-)Per2(Luc), mice have significantly shorter (by approximately 0.5 h) circadian periods in PER2 rhythms, compared with explants from Per2(Luc) mice, revealing that the membrane properties of SCN neurons feedback to regulate clock (PER2) expression. The combined loss of both Kv1.4- and Kv4.2-encoded IA channels in Kv1.4(-/-)/Kv4.2(-/-)Per2(Luc) SCN explants did not result in any further alterations in PER2 rhythms. Interestingly, however, mice lacking both Kv1.4 and Kv4.2 show a striking (approximately 1.8 h) advance in their daily activity onset in a light cycle compared with WT mice, suggesting additional roles for Kv1.4- and Kv4.2-encoded IA channels in controlling the light-dependent responses of neurons within and/or outside of the SCN to regulate circadian phase of daily activity.


Asunto(s)
Ritmo Circadiano/fisiología , Canal de Potasio Kv1.4/fisiología , Proteínas Circadianas Period/metabolismo , Canales de Potasio Shal/fisiología , Núcleo Supraquiasmático/fisiología , Animales , Ritmo Circadiano/genética , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Canal de Potasio Kv1.4/genética , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes/métodos , Masculino , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Actividad Motora/genética , Actividad Motora/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp , Proteínas Circadianas Period/genética , Canales de Potasio Shal/genética , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/metabolismo , Técnicas de Cultivo de Tejidos
16.
J Neurosci ; 35(17): 6752-69, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25926453

RESUMEN

Mutations in FGF14, which encodes intracellular fibroblast growth factor 14 (iFGF14), have been linked to spinocerebellar ataxia (SCA27). In addition, mice lacking Fgf14 (Fgf14(-/-)) exhibit an ataxia phenotype resembling SCA27, accompanied by marked changes in the excitability of cerebellar granule and Purkinje neurons. It is not known, however, whether these phenotypes result from defects in neuronal development or if they reflect a physiological requirement for iFGF14 in the adult cerebellum. Here, we demonstrate that the acute and selective Fgf14-targeted short hairpin RNA (shRNA)-mediated in vivo "knock-down" of iFGF14 in adult Purkinje neurons attenuates spontaneous and evoked action potential firing without measurably affecting the expression or localization of voltage-gated Na(+) (Nav) channels at Purkinje neuron axon initial segments. The selective shRNA-mediated in vivo "knock-down" of iFGF14 in adult Purkinje neurons also impairs motor coordination and balance. Repetitive firing can be restored in Fgf14-targeted shRNA-expressing Purkinje neurons, as well as in Fgf14(-/-) Purkinje neurons, by prior membrane hyperpolarization, suggesting that the iFGF14-mediated regulation of the excitability of mature Purkinje neurons depends on membrane potential. Further experiments revealed that the loss of iFGF14 results in a marked hyperpolarizing shift in the voltage dependence of steady-state inactivation of the Nav currents in adult Purkinje neurons. We also show here that expressing iFGF14 selectively in adult Fgf14(-/-) Purkinje neurons rescues spontaneous firing and improves motor performance. Together, these results demonstrate that iFGF14 is required for spontaneous and evoked action potential firing in adult Purkinje neurons, thereby controlling the output of these cells and the regulation of motor coordination and balance.


Asunto(s)
Potenciales de Acción/genética , Cerebelo/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Equilibrio Postural/genética , Desempeño Psicomotor/fisiología , Células de Purkinje/fisiología , Potenciales de Acción/fisiología , Animales , Ancirinas/metabolismo , Axones/metabolismo , Línea Celular Transformada , Cricetulus , Femenino , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Células de Purkinje/citología
17.
Neuroscientist ; 20(2): 104-11, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24106264

RESUMEN

In many peripheral and central neurons, A-type K(+) currents, IA, have been identified and shown to be key determinants in shaping action potential waveforms and repetitive firing properties, as well as in the regulation of synaptic transmission and synaptic plasticity. The functional properties and physiological roles of native neuronal IA, however, have been shown to be quite diverse in different types of neurons. Accumulating evidence suggests that this functional diversity is generated by multiple mechanisms, including the expression and subcellular distributions of IA channels encoded by different voltage-gated K(+) (Kv) channel pore-forming (α) subunits, interactions of Kv α subunits with cytosolic and/or transmembrane accessory subunits and regulatory proteins and post-translational modifications of channel subunits. Several recent reports further suggest that local protein translation in the dendrites of neurons and interactions between IA channels with other types of voltage-gated ion channels further expands the functional diversity of native neuronal IA channels. Here, we review the diverse molecular mechanisms that have been shown or proposed to underlie the functional diversity of native neuronal IA channels.


Asunto(s)
Neuronas/fisiología , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales
18.
J Neurosci ; 33(44): 17373-84, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-24174670

RESUMEN

Mouse visual cortex is subdivided into multiple distinct, hierarchically organized areas that are interconnected through feedforward (FF) and feedback (FB) pathways. The principal synaptic targets of FF and FB axons that reciprocally interconnect primary visual cortex (V1) with the higher lateromedial extrastriate area (LM) are pyramidal cells (Pyr) and parvalbumin (PV)-expressing GABAergic interneurons. Recordings in slices of mouse visual cortex have shown that layer 2/3 Pyr cells receive excitatory monosynaptic FF and FB inputs, which are opposed by disynaptic inhibition. Most notably, inhibition is stronger in the FF than FB pathway, suggesting pathway-specific organization of feedforward inhibition (FFI). To explore the hypothesis that this difference is due to diverse pathway-specific strengths of the inputs to PV neurons we have performed subcellular Channelrhodopsin-2-assisted circuit mapping in slices of mouse visual cortex. Whole-cell patch-clamp recordings were obtained from retrobead-labeled FF(V1→LM)- and FB(LM→V1)-projecting Pyr cells, as well as from tdTomato-expressing PV neurons. The results show that the FF(V1→LM) pathway provides on average 3.7-fold stronger depolarizing input to layer 2/3 inhibitory PV neurons than to neighboring excitatory Pyr cells. In the FB(LM→V1) pathway, depolarizing inputs to layer 2/3 PV neurons and Pyr cells were balanced. Balanced inputs were also found in the FF(V1→LM) pathway to layer 5 PV neurons and Pyr cells, whereas FB(LM→V1) inputs to layer 5 were biased toward Pyr cells. The findings indicate that FFI in FF(V1→LM) and FB(LM→V1) circuits are organized in a pathway- and lamina-specific fashion.


Asunto(s)
Retroalimentación Fisiológica/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiología , Técnicas de Cultivo de Órganos , Estimulación Luminosa/métodos
19.
J Neurosci ; 32(29): 10045-52, 2012 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-22815518

RESUMEN

Neurons in the suprachiasmatic nucleus (SCN) display coordinated circadian changes in electrical activity that are critical for daily rhythms in physiology, metabolism, and behavior. SCN neurons depolarize spontaneously and fire repetitively during the day and hyperpolarize, drastically reducing firing rates, at night. To explore the hypothesis that rapidly activating and inactivating A-type (I(A)) voltage-gated K(+) (Kv) channels, which are also active at subthreshold membrane potentials, are critical regulators of the excitability of SCN neurons, we examined locomotor activity and SCN firing in mice lacking Kv1.4 (Kv1.4(-/-)), Kv4.2 (Kv4.2(-/-)), or Kv4.3 (Kv4.3(-/-)), the pore-forming (α) subunits of I(A) channels. Mice lacking either Kv1.4 or Kv4.2 α subunits have markedly shorter (0.5 h) periods of locomotor activity than wild-type (WT) mice. In vitro extracellular multi-electrode recordings revealed that Kv1.4(-/-) and Kv4.2(-/-) SCN neurons display circadian rhythms in repetitive firing, but with shorter periods (0.5 h) than WT cells. In contrast, the periods of wheel-running activity in Kv4.3(-/-) mice and firing in Kv4.3(-/-) SCN neurons were indistinguishable from WT animals and neurons. Quantitative real-time PCR revealed that the transcripts encoding all three Kv channel α subunits, Kv1.4, Kv4.2, and Kv4.3, are expressed constitutively throughout the day and night in the SCN. Together, these results demonstrate that Kv1.4- and Kv4.2-encoded I(A) channels regulate the intrinsic excitability of SCN neurons during the day and night and determine the period and amplitude of circadian rhythms in SCN neuron firing and locomotor behavior.


Asunto(s)
Potenciales de Acción/fisiología , Ritmo Circadiano/fisiología , Canal de Potasio Kv1.4/metabolismo , Actividad Motora/fisiología , Neuronas/fisiología , Canales de Potasio Shal/metabolismo , Núcleo Supraquiasmático/fisiología , Animales , Activación del Canal Iónico/fisiología , Canal de Potasio Kv1.4/genética , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Canales de Potasio Shal/genética
20.
J Physiol ; 590(16): 3877-90, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22615428

RESUMEN

Rapidly activating and rapidly inactivating voltage-gated A-type K+ currents, IA, are key determinants of neuronal excitability and several studies suggest a critical role for the Kv4.2 pore-forming α subunit in the generation of IA channels in hippocampal and cortical pyramidal neurons. The experiments here demonstrate that Kv4.2, Kv4.3 and Kv1.4 all contribute to the generation of IA channels in mature cortical pyramidal (CP) neurons and that Kv4.2-, Kv4.3- and Kv1.4-encoded IA channels play distinct roles in regulating the intrinsic excitability and the firing properties of mature CP neurons. In vivo loss of Kv4.2, for example, alters the input resistances, current thresholds for action potential generation and action potential repolarization of mature CP neurons. Elimination of Kv4.3 also prolongs action potential duration, whereas the input resistances and the current thresholds for action potential generation in Kv4.3−/− and WT CP neurons are indistinguishable. In addition, although increased repetitive firing was observed in both Kv4.2−/− and Kv4.3−/− CP neurons, the increases in Kv4.2−/− CP neurons were observed in response to small, but not large, amplitude depolarizing current injections, whereas firing rates were higher in Kv4.3−/− CP neurons only with large amplitude current injections. In vivo loss of Kv1.4, in contrast, had minimal effects on the intrinsic excitability and the firing properties of mature CP neurons. Comparison of the effects of pharmacological blockade of Kv4-encoded currents in Kv1.4−/− and WT CP neurons, however, revealed that Kv1.4-encoded IA channels do contribute to controlling resting membrane potentials, the regulation of current thresholds for action potential generation and repetitive firing rates in mature CP neurons.


Asunto(s)
Canal de Potasio Kv1.4/metabolismo , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Tractos Piramidales/fisiología , Canales de Potasio Shal/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , Canal de Potasio Kv1.4/genética , Potenciales de la Membrana/efectos de los fármacos , Ratones , Neuronas/citología , Canales de Potasio Shal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...