Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genet Mol Biol ; 45(3 Suppl 1): e20220077, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36121926

RESUMEN

Massively parallel sequencing, also referred to as next-generation sequencing, has positively changed DNA analysis, allowing further advances in genetics. Its capability of dealing with low quantity/damaged samples makes it an interesting instrument for forensics. The main advantage of MPS is the possibility of analyzing simultaneously thousands of genetic markers, generating high-resolution data. Its detailed sequence information allowed the discovery of variations in core forensic short tandem repeat loci, as well as the identification of previous unknown polymorphisms. Furthermore, different types of markers can be sequenced in a single run, enabling the emergence of DIP-STRs, SNP-STR haplotypes, and microhaplotypes, which can be very useful in mixture deconvolution cases. In addition, the multiplex analysis of different single nucleotide polymorphisms can provide valuable information about identity, biogeographic ancestry, paternity, or phenotype. DNA methylation patterns, mitochondrial DNA, mRNA, and microRNA profiling can also be analyzed for different purposes, such as age inference, maternal lineage analysis, body-fluid identification, and monozygotic twin discrimination. MPS technology also empowers the study of metagenomics, which analyzes genetic material from a microbial community to obtain information about individual identification, post-mortem interval estimation, geolocation inference, and substrate analysis. This review aims to discuss the main applications of MPS in forensic genetics.

2.
Int J Legal Med ; 135(4): 1329-1339, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33884487

RESUMEN

Human pigmentation is a complex trait, probably involving more than 100 genes. Predicting phenotypes using SNPs present in those genes is important for forensic purpose. For this, the HIrisPlex tool was developed for eye and hair color prediction, with both models achieving high accuracy among Europeans. Its evaluation in admixed populations is important, since they present a higher frequency of intermediate phenotypes, and HIrisPlex has demonstrated limitations in such predictions; therefore, the performance of this tool may be impaired in such populations. Here, we evaluate the set of 24 markers from the HIrisPlex system in 328 individuals from Ribeirão Preto (SP) region, predicting eye and hair color and comparing the predictions with their real phenotypes. We used the HaloPlex Target Enrichment System and MiSeq Personal Sequencer platform for massively parallel sequencing. The prediction of eye and hair color was accomplished by the HIrisPlex online tool, using the default prediction settings. Ancestry was estimated using the SNPforID 34-plex to observe if and how an individual's ancestry background would affect predictions in this admixed sample. Our sample presented major European ancestry (70.5%), followed by African (21.1%) and Native American/East Asian (8.4%). HIrisPlex presented an overall sensitivity of 0.691 for hair color prediction, with sensitivities ranging from 0.547 to 0.782. The lowest sensitivity was observed for individuals with black hair, who present a reduced European contribution (48.4%). For eye color prediction, the overall sensitivity was 0.741, with sensitivities higher than 0.85 for blue and brown eyes, although it failed in predicting intermediate eye color. Such struggle in predicting this phenotype category is in accordance with what has been seen in previous studies involving HIrisPlex. Individuals with brown eye color are more admixed, with European ancestry decreasing to 62.6%; notwithstanding that, sensitivity for brown eyes was almost 100%. Overall sensitivity increases to 0.791 when a 0.7 threshold is set, though 12.5% of the individuals become undefined. When combining eye and hair prediction, hit rates between 51.3 and 68.9% were achieved. Despite the difficulties with intermediate phenotypes, we have shown that HIrisPlex results can be very helpful when interpreted with caution.


Asunto(s)
Color del Ojo/genética , Genotipo , Técnicas de Genotipaje/instrumentación , Técnicas de Genotipaje/métodos , Color del Cabello/genética , Fenotipo , Brasil/etnología , Genética Forense/métodos , Humanos
3.
Forensic Sci Int Genet ; 48: 102335, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32593164

RESUMEN

Over the past few years, tools capable of predicting pigmentation phenotypes have been developed aiming to contribute for criminal and anthropological investigations. In this study, we used eight genetic systems to infer eye, hair, and skin color of ancient and contemporary Native Americans. To achieve this goal, we retrieved 61 SNPs from 42 samples available in free online repositories of DNA sequences. We performed pigmentation predictions using two freely available tools, HIrisPlex-S and Snipper, in addition to two other published models. This workflow made possible to predict all three phenotypes with at least one tool for 29 out of the 42 samples. Considering these 29 individuals, predictions for eye, hair, and skin color were obtained with HIrisPlex-S for 27, 28 and 27 individuals, respectively, while 24, 25 and 25 individuals had such predictions with Snipper. In general, ancient and contemporary Native Americans were predicted to have intermediate/brown eyes, black hair, and intermediate/darker skin pigmentation.


Asunto(s)
Indio Americano o Nativo de Alaska/genética , Color del Ojo/genética , Color del Cabello/genética , Polimorfismo de Nucleótido Simple , Pigmentación de la Piel/genética , Programas Informáticos , Alelos , Genética Forense , Genotipo , Humanos , Modelos Genéticos , Fenotipo
4.
Forensic Sci Int Genet ; 40: 201-209, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30889526

RESUMEN

SNP analysis is of paramount importance in forensic genetics. The development of new technologies in next-generation sequencing allowed processing a large number of markers in various samples simultaneously. Although SNPs are less informative than STRs, they present lower mutation rates and perform better when using degraded samples. Some SNP systems were developed for forensic usage, such as the SNPforID 52-plex, from the SNPforID Consortium, containing 52 bi-allelic SNPs for human identification. In this paper we evaluated the informativeness of this system in a Brazilian population sample (n = 340). DNA libraries were prepared using a customized HaloPlex Target Enrichment System kit (Agilent Technologies, Inc.) and sequenced in the MiSeq Personal Sequencer platform (Illumina Inc.). The methodology presented here allowed the analysis of 51 out of 52 SNPforID markers. Allele frequencies and forensic parameters were estimated, revealing high informativeness: the combined match probability and power of exclusion were 6.48 × 10-21 and 0.9997, respectively. Population admixture analysis indicates high European contribution (more than 70%) and low Amerindian contribution (less than 10%) in our population, while individual admixture analyses were consistent with the majority of individuals presenting high European contribution. This study demonstrates that the 52-plex kit is suitable for forensic cases in a Brazilian population, presenting results comparable with those obtained using a 16 STR panel.


Asunto(s)
Genética de Población , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Adolescente , Adulto , Anciano , Brasil , Dermatoglifia del ADN , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Masculino , Repeticiones de Microsatélite , Persona de Mediana Edad , Grupos Raciales/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...