RESUMEN
AIMS: Activation of the angiotensin (Ang)-(1-7)/Mas receptor (R) axis protects from sympathetic overactivity. Endocytic trafficking is an essential process that regulates receptor (R) function and its ultimate cellular responses. We investigated whether the blunted responses to Ang-(1-7) in hypertensive rats are associated to an alteration in MasR trafficking. METHODS AND RESULTS: Brainstem neurons from Wistar-Kyoto (WKY) or spontaneously hypertensive rats (SHRs) were investigated for (i) Ang-(1-7) levels and binding and MasR expression, (ii) Ang-(1-7) responses (arachidonic acid and nitric oxide release and Akt and ERK1/2 phosphorylation), and (iii) MasR trafficking. Ang-(1-7) was determined by radioimmunoassay. MasR expression and functionality were evaluated by western blot and binding assays. MasR trafficking was evaluated by immunofluorescence. Ang-(1-7) treatment induced an increase in nitric oxide and arachidonic acid release and ERK1/2 and Akt phosphorylation in WKY neurons but did not have an effect in SHR neurons. Although SHR neurons showed greater MasR expression, Ang-(1-7)-elicited responses were substantially diminished presumably due to decreased Ang-(1-7) endogenous levels concomitant with impaired binding to its receptor. Through immunocolocalization studies, we evidenced that upon Ang-(1-7) stimulation MasRs were internalized through clathrin-coated pits and caveolae into early endosomes and slowly recycled back to the plasma membrane. However, the fraction of internalized MasRs into early endosomes was larger and the fraction of MasRs recycled back to the plasma membrane was smaller in SHR than in WKY neurons. Surprisingly, in SHR neurons but not in WKY neurons, Ang-(1-7) induced MasR translocation to the nucleus. Nuclear MasR expression and Ang-(1-7) levels were significantly greater in the nuclei of Ang-(1-7)-stimulated SHR neurons, indicating that the MasR is translocated with its ligand bound to it. CONCLUSION: MasRs display differential trafficking in brainstem neurons from SHRs, which may contribute to the impaired responses to Ang-(1-7).
Asunto(s)
Angiotensina I/farmacología , Tronco Encefálico/efectos de los fármacos , Hipertensión/metabolismo , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Transporte Activo de Núcleo Celular , Animales , Animales Recién Nacidos , Ácido Araquidónico/metabolismo , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Endocitosis , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipertensión/fisiopatología , Ligandos , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Fosforilación , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P < 0.001; n = 9). This concentration of Ang II-stimulated O2 (-) production by 50% (1.77 ± 0.26 vs. 2.62 ± 0.36 relative lights units (RLU)/s/µg protein; P < 0.04; n = 5). In the presence of the NOS inhibitor L-NAME, Ang II-stimulated O2 (-) decreased from 2.02 ± 0.29 to 1.10 ± 0.11 RLU/s/µg protein (P < 0.01; n = 8). L-arginine alone did not change Ang II-stimulated O2 (-) (2.34 ± 0.22 vs. 2.29 ± 0.29 RLU/s/µg protein; n = 5). In the presence of Ang II plus the PKC α/ß1 inhibitor Gö 6976, L-NAME had no effect on O2 (-) production (0.78 ± 0.23 vs. 0.62 ± 0.11 RLU/s/µg protein; n = 7). In the presence of Ang II plus apocynin, a NADPH oxidase inhibitor, L-NAME did not change O2 (-) (0.59 ± 0.04 vs. 0.61 ± ×0.08 RLU/s/µg protein; n = 5). We conclude that: (1) Ang II causes NOS to produce O2 (-) in thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate.
Asunto(s)
Angiotensina II/metabolismo , Asa de la Nefrona/metabolismo , Nefronas/metabolismo , Óxido Nítrico Sintasa/metabolismo , Superóxidos/metabolismo , Animales , Mediciones Luminiscentes , Masculino , Microscopía Fluorescente , NADPH Oxidasas/metabolismo , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-DawleyRESUMEN
Angiotensin (Ang) (1-7) is the endogenous ligand for the G protein-coupled receptor Mas, a receptor associated with cardiac, renal, and cerebral protective responses. Physiological evidence suggests that Mas receptor (MasR) undergoes agonist-dependent desensitization, but the underlying molecular mechanism regulating receptor activity is unknown. We investigated the hypothesis that MasR desensitizes and internalizes on stimulation with Ang-(1-7). For this purpose, we generated a chimera between the MasR and the yellow fluorescent protein (YFP; MasR-YFP). MasR-YFP-transfected HEK 293T cells were incubated with Ang-(1-7), and the relative cellular distribution of MasR-YFP was observed by confocal microscopy. In resting cells, MasR-YFP was mostly localized to the cell membrane. Ang-(1-7) induced a redistribution of MasR-YFP to intracellular vesicles of various sizes after 5 minutes. Following the time course of [(125)I]Ang-(1-7) endocytosis, we observed that half of MasR-YFP underwent endocytosis after 10 minutes, and this was blocked by a MasR antagonist. MasR-YFP colocalized with Rab5, the early endosome antigen 1, and the adaptor protein complex 2, indicating that the R is internalized through a clathrin-mediated pathway and targeted to early endosomes after Ang-(1-7) stimulation. A fraction of MasR-YFP also colocalized with caveolin 1, suggesting that at some point MasR-YFP traverses caveolin 1-positive compartments. In conclusion, MasR undergoes endocytosis on stimulation with Ang-(1-7), and this event may explain the desensitization of MasR responsiveness. In this way, MasR activity and density may be tightly controlled by the cell.