Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1207425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600721

RESUMEN

The HDR syndrome is a rare autosomal dominant disorder characterised by Hypoparathyroidism, Deafness, and Renal dysplasia, and is caused by inactivating heterozygous germline mutations in the GATA3 gene. We report an 11-year-old girl with HDR syndrome caused by a heterozygous mutation located at the splice acceptor site of exon 5 of the GATA3 gene (NM_001002295.2: c.925-1G>T). Functional studies using a minigene assay showed that this splice site mutation abolished the normal splicing of the GATA3 pre-mRNA and led to the use of a cryptic splice acceptor site, resulting in the loss of the first seven nucleotides (TCTGCAG) of exon 5 in the GATA3 mRNA. These findings increase the understanding of the mechanisms by which GATA3 splicing mutations can cause HDR syndrome.


Asunto(s)
Sordera , Hipoparatiroidismo , Femenino , Humanos , Niño , Sitios de Empalme de ARN , Hipoparatiroidismo/complicaciones , Hipoparatiroidismo/genética , Mutación , Factor de Transcripción GATA3/genética
2.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077423

RESUMEN

The 17-beta-hydroxysteroid dehydrogenase type 3 (17-ß-HSD3) enzyme converts androstenedione to testosterone and is encoded by the HSD17B3 gene. Homozygous or compound heterozygous HSD17B3 mutations block the synthesis of testosterone in the fetal testis, resulting in a Disorder of Sex Development (DSD). We describe a child raised as a female in whom the discovery of testes in the inguinal canals led to a genetic study by whole exome sequencing (WES) and to the identification of a compound heterozygous mutation of the HSD17B3 gene (c.608C>T, p.Ala203Val, and c.645A>T, p.Glu215Asp). Furthermore, we review all HSD17B3 mutations published so far in cases of 17-ß-HSD3 deficiency. A total of 70 different HSD17B3 mutations have so far been reported in 239 patients from 187 families. A total of 118 families had homozygous mutations, 63 had compound heterozygous mutations and six had undetermined genotypes. Mutations occurred in all 11 exons and were missense (55%), splice-site (29%), small deletions and insertions (7%), nonsense (5%), and multiple exon deletions and duplications (2%). Several mutations were recurrent and missense mutations at codon 80 and the splice-site mutation c.277+4A>T each represented 17% of all mutated alleles. These findings may be useful to those involved in the clinical management and genetic diagnosis of this disorder.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Desarrollo Sexual , 17-Hidroxiesteroide Deshidrogenasas/deficiencia , 17-Hidroxiesteroide Deshidrogenasas/genética , Niño , Trastorno del Desarrollo Sexual 46,XY , Femenino , Ginecomastia , Humanos , Masculino , Mutación , Errores Congénitos del Metabolismo Esteroideo , Testosterona
3.
J Neurosci ; 41(43): 8876-8886, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34503995

RESUMEN

Cortical parvalbumin-expressing (Pvalb+) neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. This class of inhibitory neurons undergoes extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. While several transcription factors, such as Nkx2-1, Lhx6, and Sox6, are known to be necessary for the differentiation of progenitors into Pvalb+ neurons, which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons' innervation and synaptic function remains largely unknown. Because Sox6 is continuously expressed in Pvalb+ neurons until adulthood, we used conditional knock-out strategies to investigate its putative role in the postnatal maturation and synaptic function of cortical Pvalb+ neurons in mice of both sexes. We found that early postnatal loss of Sox6 in Pvalb+ neurons leads to failure of synaptic bouton growth, whereas later removal in mature Pvalb+ neurons in the adult causes shrinkage of already established synaptic boutons. Paired recordings between Pvalb+ neurons and pyramidal neurons revealed reduced release probability and increased failure rate of Pvalb+ neurons' synaptic output. Furthermore, Pvalb+ neurons lacking Sox6 display reduced expression of full-length tropomyosin-receptor kinase B (TrkB), a key modulator of GABAergic transmission. Once re-expressed in neurons lacking Sox6, TrkB was sufficient to rescue the morphologic synaptic phenotype. Finally, we showed that Sox6 mRNA levels were increased by motor training. Our data thus suggest a constitutive role for Sox6 in the maintenance of synaptic output from Pvalb+ neurons into adulthood.SIGNIFICANCE STATEMENT Cortical parvalbumin-expressing (Pvalb+) inhibitory neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. These inhibitory neurons undergo extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood. However, it remains largely unknown which transcriptional programs underlie the postnatal maturation and maintenance of Pvalb+ neurons. Here, we show that the transcription factor Sox6 cell-autonomously regulates the synaptic maintenance and output of Pvalb+ neurons until adulthood, leaving unaffected other maturational features of this neuronal population.


Asunto(s)
Corteza Cerebral/metabolismo , Neuronas/metabolismo , Parvalbúminas/biosíntesis , Factores de Transcripción SOXD/biosíntesis , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Corteza Cerebral/citología , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Parvalbúminas/genética , Factores de Transcripción SOXD/genética , Sinapsis/genética
4.
Nat Commun ; 12(1): 3653, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135323

RESUMEN

The Mechanistic Target Of Rapamycin Complex 1 (mTORC1) pathway controls several aspects of neuronal development. Mutations in regulators of mTORC1, such as Tsc1 and Tsc2, lead to neurodevelopmental disorders associated with autism, intellectual disabilities and epilepsy. The correct development of inhibitory interneurons is crucial for functional circuits. In particular, the axonal arborisation and synapse density of parvalbumin (PV)-positive GABAergic interneurons change in the postnatal brain. How and whether mTORC1 signaling affects PV cell development is unknown. Here, we show that Tsc1 haploinsufficiency causes a premature increase in terminal axonal branching and bouton density formed by mutant PV cells, followed by a loss of perisomatic innervation in adult mice. PV cell-restricted Tsc1 haploinsufficient and knockout mice show deficits in social behavior. Finally, we identify a sensitive period during the third postnatal week during which treatment with the mTOR inhibitor Rapamycin rescues deficits in both PV cell innervation and social behavior in adult conditional haploinsufficient mice. Our findings reveal a role of mTORC1 signaling in the regulation of the developmental time course and maintenance of cortical PV cell connectivity and support a mechanistic basis for the targeted rescue of autism-related behaviors in disorders associated with deregulated mTORC1 signaling.


Asunto(s)
Interneuronas/patología , Parvalbúminas/metabolismo , Conducta Social , Proteína 1 del Complejo de la Esclerosis Tuberosa/deficiencia , Animales , Autofagia , Axones/efectos de los fármacos , Axones/patología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mutación , Transducción de Señal/efectos de los fármacos , Sirolimus/administración & dosificación , Sirolimus/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/patología , Factores de Tiempo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo
5.
Cereb Cortex ; 28(11): 4049-4062, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30169756

RESUMEN

KCC2 is the major chloride extruder in neurons. The spatiotemporal regulation of KCC2 expression orchestrates the developmental shift towards inhibitory GABAergic drive and the formation of glutamatergic synapses. Whether KCC2's role in synapse formation is similar in different brain regions is unknown. First, we found that KCC2 subcellular localization, but not overall KCC2 expression levels, differed between cortex and hippocampus during the first postnatal week. We performed site-specific in utero electroporation of KCC2 cDNA to target either hippocampal CA1 or somatosensory cortical pyramidal neurons. We found that a premature expression of KCC2 significantly decreased spine density in CA1 neurons, while it had the opposite effect in cortical neurons. These effects were cell autonomous, because single-cell biolistic overexpression of KCC2 in hippocampal and cortical organotypic cultures also induced a reduction and an increase of dendritic spine density, respectively. In addition, we found that the effects of its premature expression on spine density were dependent on BDNF levels. Finally, we showed that the effects of KCC2 on dendritic spine were dependent on its chloride transporter function in the hippocampus, contrary to what was observed in cortex. Altogether, these results demonstrate that KCC2 regulation of dendritic spine development, and its underlying mechanisms, are brain-region specific.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Región CA1 Hipocampal/crecimiento & desarrollo , Espinas Dendríticas/fisiología , Corteza Somatosensorial/crecimiento & desarrollo , Simportadores/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA1 Hipocampal/citología , Regulación del Desarrollo de la Expresión Génica , Células Piramidales/fisiología , Ratas Sprague-Dawley , Simportadores/metabolismo , Cotransportadores de K Cl
6.
Neurobiol Dis ; 91: 10-20, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26875662

RESUMEN

Atypical febrile seizures are considered a risk factor for epilepsy onset and cognitive impairments later in life. Patients with temporal lobe epilepsy and a history of atypical febrile seizures often carry a cortical malformation. This association has led to the hypothesis that the presence of a cortical dysplasia exacerbates febrile seizures in infancy, in turn increasing the risk for neurological sequelae. The mechanisms linking these events are currently poorly understood. Potassium-chloride cotransporter KCC2 affects several aspects of neuronal circuit development and function, by modulating GABAergic transmission and excitatory synapse formation. Recent data suggest that KCC2 downregulation contributes to seizure generation in the epileptic adult brain, but its role in the developing brain is still controversial. In a rodent model of atypical febrile seizures, combining a cortical dysplasia and hyperthermia-induced seizures (LHS rats), we found a premature and sustained increase in KCC2 protein levels, accompanied by a negative shift of the reversal potential of GABA. In parallel, we observed a significant reduction in dendritic spine size and mEPSC amplitude in CA1 pyramidal neurons, accompanied by spatial memory deficits. To investigate whether KCC2 premature overexpression plays a role in seizure susceptibility and synaptic alterations, we reduced KCC2 expression selectively in hippocampal pyramidal neurons by in utero electroporation of shRNA. Remarkably, KCC2 shRNA-electroporated LHS rats show reduced hyperthermia-induced seizure susceptibility, while dendritic spine size deficits were rescued. Our findings demonstrate that KCC2 overexpression in a compromised developing brain increases febrile seizure susceptibility and contribute to dendritic spine alterations.


Asunto(s)
Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Convulsiones Febriles/patología , Simportadores/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/crecimiento & desarrollo , Susceptibilidad a Enfermedades/metabolismo , Epilepsia/fisiopatología , Trastornos de la Memoria/metabolismo , Neurogénesis/fisiología , Células Piramidales/metabolismo , Ratas Sprague-Dawley , Convulsiones Febriles/metabolismo , Convulsiones Febriles/fisiopatología , Cotransportadores de K Cl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...