Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 355: 124186, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38772512

RESUMEN

Bisphenol A (BPA), a synthetic organic compound widely used in the production of plastics, is recognized as an emerging contaminant because of its toxicity and the potential risks associated with bioaccumulation in organisms. Despite potential environmental hazards, there is a lack of studies examining BPA toxicity mechanisms and its potential impact on various trophic levels, with even fewer exploring whether global stressors such as temperature can affect the toxicity of BPA in organisms. Our aim was to assess the combined impact of BPA and varying temperature regimes on life-history traits in Daphnia magna. Our results revealed a significant impact of BPA on the growth, reproduction, and accumulated moulting of D. magna, with adverse effects primarily associated with the assimilation of BPA in algae rather than the BPA present in the medium, pointing to a trophic transfer mechanism. The interactive effect between BPA and temperature demonstrated a slight stimulatory effect of low BPA level on D. magna growth rate under warming constant conditions, but an inhibitory under warming fluctuating temperatures. Additionally, a BPA threshold was identified, below which growth became temperature-dependent. This study emphasizes the crucial role of considering temperature in predicting how toxins may affect Daphnia within aquatic food webs.


Asunto(s)
Compuestos de Bencidrilo , Daphnia , Rasgos de la Historia de Vida , Fenoles , Reproducción , Temperatura , Contaminantes Químicos del Agua , Daphnia/efectos de los fármacos , Daphnia/fisiología , Daphnia/crecimiento & desarrollo , Animales , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Reproducción/efectos de los fármacos , Cadena Alimentaria , Daphnia magna
2.
Sci Total Environ ; 927: 172220, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588733

RESUMEN

The microbial carbon (C) flux in the ocean is a key functional process governed by the excretion of organic carbon by phytoplankton (EOC) and heterotrophic bacterial carbon demand (BCD). Ultraviolet radiation (UVR) levels in upper mixed layers and increasing atmospheric dust deposition from arid regions may alter the degree of coupling in the phytoplankton-bacteria relationship (measured as BCD:EOC ratio) with consequences for the C-flux through these compartments in marine oligotrophic ecosystem. Firstly, we performed a field study across the south-western (SW) Mediterranean Sea to assess the degree of coupling (BCD:EOC) and how it may be related to metabolic balance (total primary production: community respiration; PPT:CR). Secondly, we conducted a microcosm experiment in two contrasting areas (heterotrophic nearshore and autotrophic open sea) to test the impact of UVR and dust interaction on microbial C flux. In the field study, we found that BCD was not satisfied by EOC (i.e., BCD:EOC >1; uncoupled phytoplankton-bacteria relationship). BCD:EOC ratio was negatively related to PPT:CR ratio across the SW Mediterranean Sea. A spatial pattern emerged, i.e. in autotrophic open sea stations uncoupling was less severe (BCD:EOC ranged 1-2), whereas heterotrophic nearshore stations uncoupling was more severe (BCD:EOC > 2). In the experimental study, in the seawater both enriched with dust and under UVR, BCD:EOC ratio decreased by stimulating autotrophic processes (particulate primary production (PPP) and EOC) in the heterotrophic nearshore area, whereas BCD:EOC increased by stimulating heterotrophic processes [heterotrophic bacterial production (HBP), bacterial growth efficiency (BGE), bacterial respiration (BR)] in the autotrophic open sea. Our results show that this spatial pattern could be reversed under future UVR × Dust scenario. Overall, the impact of greater dust deposition and higher UVR levels will alter the phytoplankton-bacteria C-flux with consequences for the productivity of both communities, their standing stocks, and ultimately, the ecosystem's metabolic balance at the sea surface.


Asunto(s)
Bacterias , Polvo , Fitoplancton , Rayos Ultravioleta , Fitoplancton/efectos de la radiación , Mar Mediterráneo , Polvo/análisis , Bacterias/metabolismo , Agua de Mar/microbiología , Ciclo del Carbono , África del Norte , Ecosistema
3.
Microb Ecol ; 83(3): 555-567, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34145482

RESUMEN

The Metabolic Theory of Ecology (MTE) predicts that the temperature increases exert a common effect on organisms stimulating metabolic rates, this being stronger for a heterotrophic than for an autotrophic metabolism. However, no available studies within the MTE framework have focused on organisms' response under fluctuation at high temperature interacting with factors such as nutrient availability, or how this interaction could affect the coexistence between mixotrophic and strict autotrophic phytoplankton. Hence, we assess how the phytoplankton metabolism and species composition are affected under scenarios of high temperature and fluctuation at high temperature, and how nutrients alter the direction and magnitude of such impact. For that, we use a mixed culture composed of two phytoplankton species: a strict autotrophic species and a mixotrophic species. Our results indicate that, in agreement with the MTE, only fluctuation at high temperature treatment registered a greater activation energy (Ea) value for respiration than for primary production and stimulated mixotrophic over strict autotrophic species abundance compared to control treatment. Remarkably, fluctuation at high temperature had a strong negative impact on the total abundance of the mixed-culture. The interaction between nutrient enrichment and fluctuation at high temperature increased abundance of the strict autotrophic species and overall species abundance, and led to Ea values that were higher in primary production than in respiration. Changes in community composition, enhanced by nutrient enrichment, could be behind this response, which can have implications in ecosystem functioning in a changing world.


Asunto(s)
Ecosistema , Fitoplancton , Procesos Heterotróficos , Nutrientes/metabolismo , Fitoplancton/metabolismo , Temperatura
4.
Sci Total Environ ; 816: 151491, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-34752863

RESUMEN

Multiple drivers are threatening the functioning of the microbial food webs and trophic interactions. Our understanding about how temperature, CO2, nutrient inputs, and solar ultraviolet radiation (UVR) availability interact to alter ecosystem functioning is scarce because research has focused on single and double interactions. Moreover, the role that the degree of in situ nutrient limitation could play in the outcome of these interactions has been largely neglected, despite it is predominant in marine ecosystems. We address these uncertainties by combining remote-sensing analyses, and a collapsed experimental design with natural microbial communities from Mediterranean Sea and Atlantic Ocean exposed to temperature, nutrients, CO2, and UVR interactions. At the decade scale, we found that more intense and frequent (and longer lasting) Saharan dust inputs (and marine heatwaves) were only coupled with reduced phytoplankton biomass production. When microbial communities were concurrently exposed to future temperature, CO2, nutrient, and UVR conditions (i.e. the drivers studied over long-term scales), we found shifts from net autotrophy [primary production:respiration (PP:R) ratio > 1] towards a metabolic equilibrium (PP:R ratio ~ 1) or even a net heterotrophy (PP:R ratio < 1), as P-limitation degree was higher (i.e. Atlantic Ocean). These changes in the metabolic balance were coupled with a weakened phytoplankton-bacteria interaction (i.e. bacterial carbon demand exceeded phytoplankton carbon supply. Our work reveals that an accentuated in situ P limitation may promote reductions both in carbon uptake and fluxes between trophic levels in microbial plankton communities under global-change conditions. We show that considering long-term series can aid in identifying major local environmental drivers (i.e. temperature and nutrients in our case), easing the design of future global-change studies, but also that the abiotic environment to which microbial plankton communities are acclimated should be taken into account to avoid biased predictions concerning the effects of multiple interacting global-change drivers on marine ecosystems.


Asunto(s)
Ecosistema , Plancton , Fósforo , Fitoplancton , Rayos Ultravioleta
5.
Front Nutr ; 8: 694775, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277688

RESUMEN

Water scarcity and excess adiposity are two of the main problems worldwide and in Mexico, which is the most obese country in the world and suffers from water scarcity. Food production represents 90% of a person's water footprint (WF), and healthy diets can lead to less WF than do unhealthy diets related to obesity. We calculated the WF of the diet and caloric intake of adults in Mexico and analyzed its relationship with adiposity. Also, the risk of water expenditure due to adiposity and adherence to dietary recommendations regarding WF of international healthy diets were examined. A Food Consumption Frequency Questionnaire (FCFQ) was applied to 395 adults. Body mass index (BMI), associated with adiposity indicators, was used as a reference for grouping a sample into adiposity levels. The WF was calculated according to the WF Assessment Method, considering correction factors and accounting for water involved in cooking and food washing. Our results showed that the Mexican diet spends 6,056 liters per person per day (L p-1d-1) and is 55% higher than international healthy diets WF. Consumption of beef, milk, fruits, chicken, and fatty cereals represented 56% of total WF. Strong relations appeared between hypercaloric diets and high WF. Diets of people with excess adiposity generated statistically higher WF with extra expenses of 729 L p-1d-1 compared with the normal adiposity population. Following nutritional recommendations offers a protective factor in water care, whereas not adhering to these represents a risk up to 93 times greater of water expenditure regarding international healthy diets. Therefore, both for the general population and to regulate obesity, adequate diets can help mitigate the problem of water scarcity.

6.
Life (Basel) ; 11(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671121

RESUMEN

Who's cooking, who's cleaning, and who's got the remote control within the waters blanketing Earth? Anatomically tiny, numerically dominant microbes are the crucial "homemakers" of the watery household. Phytoplankton's culinary abilities enable them to create food by absorbing sunlight to fix carbon and release oxygen, making microbial autotrophs top-chefs in the aquatic kitchen. However, they are not the only bioengineers that balance this complex household. Ubiquitous heterotrophic microbes including prokaryotic bacteria and archaea (both "bacteria" henceforth), eukaryotic protists, and viruses, recycle organic matter and make inorganic nutrients available to primary producers. Grazing protists compete with viruses for bacterial biomass, whereas mixotrophic protists produce new organic matter as well as consume microbial biomass. When viruses press remote-control buttons, by modifying host genomes or lysing them, the outcome can reverberate throughout the microbial community and beyond. Despite recognition of the vital role of microbes in biosphere housekeeping, impacts of anthropogenic stressors and climate change on their biodiversity, evolution, and ecological function remain poorly understood. How trillions of the smallest organisms in Earth's largest ecosystem respond will be hugely consequential. By making the study of ecology personal, the "housekeeping" perspective can provide better insights into changing ecosystem structure and function at all scales.

7.
Microb Ecol ; 82(4): 981-993, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33661311

RESUMEN

Mixotrophy combines autotrophy and phagotrophy in the same cell. However, it is not known to what extent the phagotrophy influences metabolism, cell composition, and growth. In this work, we assess, on the one hand (first test), the role of phagotrophy on the elemental and biochemical composition, cell metabolism, and enzymes related to C, N, and S metabolism of Isochrysis galbana Parke, 1949. On the other hand, we study how a predicted increase of phagotrophy under environmental conditions of low nutrients (second test) and low light (third test) can affect its metabolism and growth. Our results for the first test revealed that bacterivory increased the phosphorous and iron content per cell, accelerating cell division and improving the cell fitness; in addition, the stimulation of some C and N enzymatic routes help to maintain, to some degree, compositional homeostasis. Under nutrient or light scarcity, I. galbana grew more slowly despite greater bacterial consumption, and the activities of key enzymes involved in C, N, and S metabolism changed according to a predominantly phototrophic strategy of nutrition in this alga. Contrary to recent studies, the stimulation of phagotrophy under low nutrient and low irradiance did not imply greater and more efficient C flux.


Asunto(s)
Haptophyta , Procesos Autotróficos , Bacterias , Luz , Nutrientes , Fósforo
8.
Sci Rep ; 10(1): 19812, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188224

RESUMEN

Increases in rainfall, continental runoff, and atmospheric dust deposition are reducing water transparency in lakes worldwide (i.e. higher attenuation Kd). Also, ongoing alterations in multiple environmental drivers due to global change are unpredictably impacting phytoplankton responses and lakes functioning. Although both issues demand urgent research, it remains untested how the interplay between Kd and multiple interacting drivers affect primary productivity (Pc). We manipulated four environmental drivers in an in situ experiment-quality of solar ultraviolet radiation (UVR), nutrient concentration (Nut), CO2 partial pressure (CO2), and light regime (Mix)-to determine how the Pc of nine freshwater phytoplankton communities, found along a Kd gradient in Mediterranean ecosystems, changed as the number of interacting drivers increased. Our findings indicated that UVR was the dominant driver, its effect being between 3-60 times stronger, on average, than that of any other driver tested. Also, UVR had the largest difference in driver magnitude of all the treatments tested. A future UVR × CO2 × Mix × Nut scenario exerted a more inhibitory effect on Pc as the water column became darker. However, the magnitude of this synergistic effect was 40-60% lower than that exerted by double and triple interactions and by UVR acting independently. These results illustrate that although future global-change conditions could reduce Pc in Mediterranean lakes, multiple interacting drivers can temper the impact of a severely detrimental driver (i.e. UVR), particularly as the water column darkens.

9.
Sci Rep ; 10(1): 6461, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277085

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Sci Rep ; 10(1): 350, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941977

RESUMEN

Global-change stressors act under different timing, implying complexity and uncertainty in the study of interactive effects of multiple factors on planktonic communities. We manipulated three types of stressors acting in different time frames in an in situ experiment: ultraviolet radiation (UVR); phosphorus (P) concentration; temperature (T) in an oligotrophic Mediterranean high-mountain lake. The aim was to examine how the sensitivity of phytoplankton and bacterioplankton to UVR and their trophic relationship change under nutrient acclimation and abrupt temperature shifts. Phytoplankton and bacteria showed a common pattern of metabolic response to UVR × P addition interaction, with an increase in their production rates, although evidencing an inhibitory UVR effect on primary production (PP) but stimulatory on bacterial production (HBP). An abrupt T shift in plankton acclimated to UVR and P addition decreased the values of PP, evidencing an inhibitory UVR effect, whereas warming increased HBP and eliminated the UVR effect. The weakening of commensalistic and predatory relationship between phyto- and bacterioplankton under all experimental conditions denotes the negative effects of present and future global-change conditions on planktonic food webs towards impairing C flux within the microbial loop.


Asunto(s)
Bacterias/metabolismo , Fitoplancton/metabolismo , Bacterias/efectos de los fármacos , Bacterias/efectos de la radiación , Cambio Climático , Lagos/microbiología , Fósforo/farmacología , Fitoplancton/efectos de los fármacos , Fitoplancton/efectos de la radiación , España , Temperatura , Rayos Ultravioleta
11.
Sci Total Environ ; 691: 908-918, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31326814

RESUMEN

Energy (photosynthetically active [PAR] and ultraviolet [UVR] radiation) and matter (organic and inorganic nutrients) fluxes regulate the ecosystem's stability. However, the mechanisms underpinning the potential interplay between resistance and resilience to shifts in nutrient inputs and UVR are poorly understood. To assess how the UVR × nutrients interaction alters ecosystem stability, we exposed in situ a microbial food web from an oligotrophic ecosystem to: (1) two light (UVR + PAR and PAR), and (2) four nutrient (ambient concentrations, phosphorus [P], carbon [C] and C × P addition) treatments for three weeks. During this period, we quantified the community composition and biomass, sestonic P and C:P ratio, primary [PP] and bacterial [BP] production, community [CR] and bacterial [BR] respiration, excreted organic carbon [EOC], as well as the commensalistic phytoplankton-bacteria interaction (i.e. bacterial carbon demand [BCD]:EOC ratio) and the metabolic balance of the ecosystem (i.e. [PP:R] ratio). The stability of all response variables under the four environmental scenarios tested (i.e. UVR, UVR × C, UVR × P, and UVR × C × P) was quantified by means of the resistance and resilience indexes. The microbial community was dominated by phototrophs during the experimental period regardless of the treatment considered. The most complex scenario, i.e. UVR × C × P, decreased the resistance for all variables, except for BR and the PP:R ratio. Despite that PP:R ratio showed the highest resistance under such scenario, it was >1 in all environmental scenarios (i.e. net autotrophic), except under the UVR × C interaction, where, concomitant with increased resilience, the balance shifted towards net heterotrophy (PP:R < 1). Under the UVR × C × P scenario, the metabolic balance of the ecosystem proved strongly resistant due mainly to high resistance of bacterial respiration and a firm stability of the commensalistic interaction. Our results evidence that the high resilience of phototrophs (favoring their predominance over mixo- and heterotrophs) may lead to the maintenance of the autotrophic nature and carbon (C) sink capacity of the ecosystem.


Asunto(s)
Cadena Alimentaria , Agua Dulce/microbiología , Biomasa , Carbono/metabolismo , Ecosistema , Nitrógeno/metabolismo , Fósforo/metabolismo , Fitoplancton
12.
J Phycol ; 55(5): 1028-1040, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31001833

RESUMEN

Mixotrophic protists combine phagotrophy and phototrophy within a single cell. Greater phagotrophic activity could reinforce the bypass of carbon (C) flux through the bacteria-mixotroph link and thus lead to a more efficient transfer of C and other nutrients to the top of the trophic web. Determining how foreseeable changes in temperature and UVR affect mixotrophic trade-offs in favor of one or the other nutritional strategy, along the mixotrophic gradient, is key to understanding the fate of carbon and mineral nutrients in the aquatic ecosystem. Our two main hypotheses were: (i) that increased warming and UVR will divert metabolism toward phagotrophy, and (ii) that the magnitude of this shift will vary according to the organism's position along the mixotrophic gradient. To test these hypotheses, we used two protists (Isochrysis galbana and Chromulina sp.) located in different positions on the mixotrophic gradient, subjecting them to the action of temperature and of UVR and their interaction. Our results showed that the joint action of these two factors increased the primary production:bacterivory ratio and stoichiometric values (N:P ratio) close to Redfield's ratio. Therefore, temperature and UVR shifted the metabolism of both organisms toward greater phototrophy regardless of the original position of the organism on the mixotrophic gradient. Weaker phagotrophic activity could cause a less efficient transfer of C to the top of trophic webs.


Asunto(s)
Ecosistema , Haptophyta , Carbono , Agua Dulce , Procesos Fototróficos
13.
New Phytol ; 221(3): 1317-1327, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30306559

RESUMEN

Mixotrophy is a dominant metabolic strategy in ecosystems worldwide. Shifts in temperature (T) and light (i.e. the ultraviolet portion of spectrum (UVR)) are key abiotic factors that modulate the conditions under which an organism is able to live. However, whether the interaction between both drivers alters mixotrophy in a global-change context remains unassessed. To determine the T × UVR effects on relative electron transport rates, nonphotochemical quenching, bacterivory, and bacterial production, we conducted an experiment with Isochrysis galbana populations grown mixotrophically, which were exposed to 5°C of cooling and warming with respect to the control (19°C) with (or without) UVR over light-dark cycles and different timescales. At the beginning of the experiment, cooling inhibited the relative electron transport and bacterivory rates, whereas warming depressed only bacterivory regardless of the radiation treatment. By the end of the experiment, warming and UVR conditions stimulated bacterivory. These reduced relative electron transport rates (c. 50% (warming) and > 70% (cooling)) were offset by increased (35%) cumulative bacterivory rates under warming and UVR conditions. We propose that mixotrophy constitutes an energy-saving and a compensatory mechanism to gain carbon (C) when photosynthesis is impaired, and highlight the need to consider the natural environmental changes affecting the populations when we test the impacts of interacting global-change drivers.


Asunto(s)
Organismos Acuáticos/fisiología , Organismos Acuáticos/efectos de la radiación , Frío , Calentamiento Global , Haptophyta/fisiología , Haptophyta/efectos de la radiación , Rayos Ultravioleta , Bacterias/metabolismo , Transporte de Electrón/efectos de la radiación , Fotoperiodo , Complejo de Proteína del Fotosistema II/metabolismo
14.
Sci Rep ; 8(1): 10278, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980756

RESUMEN

Algal-bacterial interactions include mutualism, commensalism, and predation. However, how multiple environmental conditions that regulate the strength and prevalence of a given interaction remains unclear. Here, we test the hypothesis that the prevailing algal-bacterial interaction shifted in two years (2005 versus 2015), due to increased temperature (T) and Saharan dust depositions in high-mountain lakes of Sierra Nevada (S Spain). Our results support the starting hypothesis that the nature of the prevailing algal-bacterial interaction shifted from a bacterivory control exerted by algae to commensalism, coinciding with a higher air and water T as well as the lower ratio sestonic nitrogen (N): phosphorous (P), related to greater aerosol inputs. Projected global change conditions in Mediterranean region could decline the functional diversity and alter the role of mixotrophy as a carbon (C) by-pass in the microbial food web, reducing the biomass-transfer efficiency up the web by increasing the number of trophic links.


Asunto(s)
Bacterias/metabolismo , Carbono/metabolismo , Clima , Lagos , Microalgas/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Biomasa , Ecosistema , Cadena Alimentaria , Región Mediterránea , España
15.
Sci Total Environ ; 639: 118-128, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29778677

RESUMEN

Rising levels of CO2 can boost plant biomass but reduce its quality as a food source for herbivores. However, significant uncertainties remain as to the degree to which the effect is modulated by other environmental factors and the underlying processes causing these responses in nature. To address these questions, we carried out CO2-manipulation experiments using natural seston from three lakes under nutrient-enriched conditions (mimicking eutrophication and atmospheric dust-input processes) as a food source for the planktonic Daphnia pulicaria. Contrary to expectations, there were no single effects of rising CO2 on herbivorous growth. Instead, synergistic CO2 × nutrient interactions indicated that CO2 did not support higher zooplankton growth rates unless supplemented with dust or inorganic nutrients (nitrogen, N; phosphorus, P) in two of three studied lakes. The overall positive correlation between zooplankton growth and seston carbon (C), but not seston C:P, suggested that this was a food quantity-mediated response. In addition, we found that this correlation improved when the data were grouped according to the nutrient treatments, and that the response was largest for dust. The synergistic CO2 × nutrient effects reported here imply that the effects of rising CO2 levels on herbivorous growth may be strongly influenced by eutrophication processes and the increase in dust deposition predicted for the Mediterranean region.


Asunto(s)
Polvo/análisis , Monitoreo del Ambiente , Plancton/crecimiento & desarrollo , Contaminantes del Agua/análisis , África del Norte , Animales , Dióxido de Carbono , Herbivoria , Lagos/química , Minerales , Nitrógeno/análisis , Fósforo/análisis
16.
Front Microbiol ; 9: 69, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29441051

RESUMEN

A continuing challenge for scientists is to understand how multiple interactive stressor factors affect biological interactions, and subsequently, ecosystems-in ways not easily predicted by single factor studies. In this review, we have compiled and analyzed available research on how multiple stressor pairs composed of temperature (T), light (L), ultraviolet radiation (UVR), nutrients (Nut), carbon dioxide (CO2), dissolved organic carbon (DOC), and salinity (S) impact the stoichiometry of autotrophs which in turn shapes the nature of their ecological interactions within lower trophic levels in streams, lakes and oceans. Our analysis from 66 studies with 320 observations of 11 stressor pairs, demonstrated that non-additive responses predominate across aquatic ecosystems and their net interactive effect depends on the stressor pair at play. Across systems, there was a prevalence of antagonism in freshwater (60-67% vs. 47% in marine systems) compared to marine systems where synergism was more common (49% vs. 33-40% in freshwaters). While the lack of data impeded comparisons among all of the paired stressors, we found pronounced system differences for the L × Nut interactions. For this interaction, our data for C:P and N:P is consistent with the initial hypothesis that the interaction was primarily synergistic in the oceans, but not for C:N. Our study found a wide range of variability in the net effects of the interactions in freshwater systems, with some observations supporting antagonism, and others synergism. Our results suggest that the nature of the stressor pairs interactions on C:N:P ratios regulates the "continuum" commensalistic-competitive-predatory relationship between algae and bacteria and the food chain efficiency at the algae-herbivore interface. Overall, the scarce number of studies with even more fewer replications in each study that are available for freshwater systems have prevented a more detailed, insightful analysis. Our findings highlighting the preponderance of antagonistic and synergistic effects of stressor interactions in aquatic ecosystems-effects that play key roles in the functioning of feedback loops in the biosphere-also stress the need for further studies evaluating the interactive effects of multiple stressors in a rapidly changing world facing a confluence of tipping points.

17.
Front Microbiol ; 8: 1911, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29056928

RESUMEN

Wet deposition of reactive nitrogen (Nr) species is considered a main factor contributing to N inputs, of which nitrate ([Formula: see text]) is usually the major component in high-mountain lakes. The microbial group of denitrifiers are largely responsible for reduction of nitrate to molecular dinitrogen (N2) in terrestrial and aquatic ecosystems, but the role of denitrification in removal of contaminant nitrates in high-mountain lakes is not well understood. We have used the oligotrophic, high-altitude La Caldera lake in the Sierra Nevada range (Spain) as a model to study the role of denitrification in nitrate removal. Dissolved inorganic Nr concentration in the water column of la Caldera, mainly nitrate, decreased over the ice-free season which was not associated with growth of microbial plankton or variations in the ultraviolet radiation. Denitrification activity, estimated as nitrous oxide (N2O) production, was measured in the water column and in sediments of the lake, and had maximal values in the month of August. Relative abundance of denitrifying bacteria in sediments was studied by quantitative polymerase chain reaction of the 16S rRNA and the two phylogenetically distinct clades nosZI and nosZII genes encoding nitrous oxide reductases. Diversity of denitrifiers in sediments was assessed using a culture-dependent approach and after the construction of clone libraries employing the nosZI gene as a molecular marker. In addition to genera Polymorphum, Paracoccus, Azospirillum, Pseudomonas, Hyphomicrobium, Thauera, and Methylophaga, which were present in the clone libraries, Arthrobacter, Burkholderia, and Rhizobium were also detected in culture media that were not found in the clone libraries. Analysis of biological activities involved in the C, N, P, and S cycles from sediments revealed that nitrate was not a limiting nutrient in the lake, allowed N2O production and determined denitrifiers' community structure. All these results indicate that denitrification could be a major biochemical process responsible for the N losses that occur in La Caldera lake.

18.
Sci Rep ; 7: 43615, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28252666

RESUMEN

Solar radiation and nutrient pulses regulate the ecosystem's functioning. However, little is known about how a greater frequency of pulsed nutrients under high ultraviolet radiation (UVR) levels, as expected in the near future, could alter the responses and interaction between primary producers and decomposers. In this report, we demonstrate through a mesocosm study in lake La Caldera (Spain) that a repeated (press) compared to a one-time (pulse) schedule under UVR prompted higher increases in primary (PP) than in bacterial production (BP) coupled with a replacement of photoautotrophs by mixotrophic nanoflagellates (MNFs). The mechanism underlying these amplified phytoplanktonic responses was a dual control by MNFs on bacteria through the excretion of organic carbon and an increased top-down control by bacterivory. We also show across a 6-year whole-lake study that the changes from photoautotrophs to MNFs were related mainly to the frequency of pulsed nutrients (e.g. desert dust inputs). Our results underscore how an improved understanding of the interaction between chronic and stochastic environmental factors is critical for predicting ongoing changes in ecosystem functioning and its responses to climatically driven changes.


Asunto(s)
Microbiología Ambiental , Interacciones Microbianas/efectos de la radiación , Rayos Ultravioleta , Clima , Ecosistema , Microbiota , Fitoplancton , Agua/análisis , Agua/química
19.
Mar Environ Res ; 125: 63-72, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28187324

RESUMEN

Global change is associated to the increase in temperature (T), nutrient inputs (Nut) and solar radiation in the water column. To address their joint impact on the net community production [NCP], respiration [CR] and PSII performance (ΦPSII) of coastal phytoplankton communities from the South Atlantic Ocean over a seasonal succession, we performed a factorial design. For this, we used a 2 × 2 × 2 matrix set-up, with and without UVR, ambient and enriched nutrients, and in situ T and in situ T + 3 °C. The future scenario of global change exerted a dual impact, from an enhancement of NCP and ΦPSII during the pre-bloom to an inhibition of both processes towards the bloom period, when the in situ T and irradiances were lower and the community was dominated by diatoms. The increased inhibition of NCP and ΦPSII during the most productive stage of the annual succession could produce significant alterations of the CO2-sink capacity of coastal areas in the future.


Asunto(s)
Monitoreo del Ambiente/métodos , Fitoplancton/fisiología , Océano Atlántico , Diatomeas/fisiología , Estaciones del Año , Temperatura , Rayos Ultravioleta , Contaminantes del Agua/análisis
20.
Sci Rep ; 6: 35892, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27775100

RESUMEN

The metabolic balance of the most extensive bioma on the Earth is a controversial topic of the global-change research. High ultraviolet radiation (UVR) levels by the shoaling of upper mixed layers and increasing atmospheric dust deposition from arid regions may unpredictably alter the metabolic state of marine oligotrophic ecosystems. We performed an observational study across the south-western (SW) Mediterranean Sea to assess the planktonic metabolic balance and a microcosm experiment in two contrasting areas, heterotrophic nearshore and autotrophic open sea, to test whether a combined UVR × dust impact could alter their metabolic balance at mid-term scales. We show that the metabolic state of oligotrophic areas geographically varies and that the joint impact of UVR and dust inputs prompted a strong change towards autotrophic metabolism. We propose that this metabolic response could be accentuated with the global change as remote-sensing evidence shows increasing intensities, frequencies and number of dust events together with variations in the surface UVR fluxes on SW Mediterranean Sea. Overall, these findings suggest that the enhancement of the net carbon budget under a combined UVR and dust inputs impact could contribute to boost the biological pump, reinforcing the role of the oligotrophic marine ecosystems as CO2 sinks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA