Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e14541, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923506

RESUMEN

Introduction: Wood is a natural resource used for construction and the manufacture of many products. This material is exposed to damage due to biotic and abiotic factors. An important biotic factor is wood-degrading fungi that generate large economic losses. The objectives of this study were to determine the effect of xylophagous fungi (Coniophora puteana and Trametes versicolor) on the natural durability of six timber species in southern Durango, Mexico, and to establish differences between fungal effects on each tree species. Materials and Methods: Samples of Pinus durangensis, P. cooperi, P. strobiformis, Juniperus deppeana, Quercus sideroxyla, and Alnus acuminata were exposed to fungi for 4 months under laboratory conditions according to European Standard EN350-1. Samples of Fagus sylvatica were used as control. Durability was determined as the percentage of wood mass loss for each species. Welch ANOVA tests were performed to establish differences among tree species. Welch t-tests were used to prove loss mass differences between fungi for each tree species. Results: The most resistant species to C. puteana were P. durangensis, J. deppeana, P. cooperi and P. strobiformis, showing mean mass losses lower than 8.08%. The most resistant species to T. versicolor were J. deppeana, P. strobiformis and P. durangensis (mean mass losses lower than 7.39%). Pinus strobiformis and Q. sideroxyla were more susceptible to C. puteana effect; in contrast, P. durangensis and P. cooperi showed more damage due to T. versicolor degradation. Conclusions: Woods of P. durangensis, P. cooperi, P. strobiformis and Juniperus deppeana are well adapted to infection by these xylophagous fungi and are therefore highly recommended for commercial use in southern Durango, Mexico.


Asunto(s)
Fagus , Pinus , Trametes/metabolismo , México , Madera/metabolismo , Pinus/metabolismo , Fagus/microbiología
2.
Molecules ; 27(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35164297

RESUMEN

Pecan nut (Carya illinoensis) pericarp is usually considered as a waste, with no or low value applications. Its potential as a densified solid biofuel has been evaluated, searching for alternatives to generating quality renewable energy and reducing polluting emissions in the atmosphere, based on particle size, that is an important feedstock property. Therefore, agro-industrial residues from the pecan nut harvest were collected, milled and sieved to four different granulometry: 1.6 mm (N° 12), 0.84 mm (N° 20), 0.42 mm (N° 40), and 0.25 mm (N° 60), used as raw material for biofuel briquette production. The carbon and oxygen functional groups in the base material were investigated by Fourier transform infrared spectroscopy (FTIR) and proximate analyses were performed following international standards, for determining the moisture content, volatile materials, fixed carbon, ash content, and calorific value. For the biofuel briquettes made from base material of different particle sizes, the physical characteristics (density, hardness, swelling, and impact resistance index) and energy potential (calorific value) were determined to define their quality as a biofuel. The physical transformation of the pecan pericarp wastes into briquettes improved its quality as a solid biofuel, with calorific values from around 17.00 MJ/kg for the base material to around 18.00 MJ/kg for briquettes, regardless of particle size. Briquettes from sieve number 40 had the highest density (1.25 g/cm3). Briquettes from sieve number 60 (finest particles) presented the greater hardness (99.85). The greatest susceptibility to swelling (0.31) was registered for briquettes with the largest particle size (sieve number 20). The IRI was 200 for all treatments.

3.
PeerJ ; 9: e10626, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33552718

RESUMEN

The particleboard industry faces problems of wood shortage, which has led to the use of non-wood lignocellulosic materials. Furthermore, there is also interest in looking for materials that improve their physical and mechanical properties. The species Luffa aegyptiaca Mill. (fruit), Agave durangensis Gentry (bagasse) and Pennisetum sp. (plant, leaves and stem) could be used in the elaboration of wood-based particleboards. The aim of this study is to determine the feasibility of using these materials to produce particleboards in accordance with their chemical composition. Five materials were studied, A. durangensis (bagasse), L. aegyptiaca (fruit) and Pennisetum sp. (whole plant, leaves and stem). Extractives, holocellulose, Runkel lignin and ash content was determined. The pH of the fibers was also measured and a microanalysis of the ash was performed. ANOVA and Kruskal-Wallis tests were carried out, in addition Tukey and Dunn tests for group comparison were performed. Pennisetum sp. leaves presented the highest total extractives and ash content, while L. aegyptiaca fruit and A. durangensis bagasse had the highest both content of holocellulose and Runkel lignin respectively. The lowest pH was presented by the L. aegyptiaca fruit, while the highest was from the Pennisetum sp. stem. The element with the greatest presence in the five materials was potassium, except in A. durangensis bagasse showing calcium. L. aegyptiaca fruit has better characteristics to be used in particleboards with greater mechanical resistance because of its higher holocellulose content. However, Pennisetum sp. (plant, leaves and stem) could be used to make particleboards with high resistance to water absorption.

4.
PeerJ ; 8: e9766, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32879806

RESUMEN

BACKGROUND: Biomass usage for energy purposes has emerged in response to global energy demands and environmental problems. The large amounts of by-products generated during logging are rarely utilized. In addition, some species (e.g., Quercus spp.) are considered less valuable and are left in the cutting areas. Production of pellets from this alternative source of biomass may be possible for power generation. Although the pellets may be of lower quality than other types of wood pellets, because of their physical and technological properties, the addition of different raw materials may improve the characteristics of the oak pellets. METHODS: Sawdust from the oak species Quercus sideroxyla, Q. rugosa, Q. laeta and Q. conzattii was mixed with sawdust from the pine Pinus durangensis in different ratios of oak to pine (100:0, 80:20, 60:40, 40:60 and 20:80). Physical and mechanical properties of the pellets were determined, and calorific value tests were carried out. For each variable, Kolmogorov-Smirnov normality and Kruskal-Wallis tests were performed and Pearson's correlation coefficients were determined (considering a significance level of p < 0.05). RESULTS: The moisture content and fixed carbon content differed significantly (p < 0.05) between the groups of pellets (i.e., pellets made with different sawdust mixtures). The moisture content of all pellets was less than 10%. However, volatile matter and ash content did not differ significantly between groups (p ≥ 0.05). The ash content was less than 0.7% in all mixtures. The addition of P. durangensis sawdust to the mixtures improved the bulk density of the pellets by 18%. Significant differences (p < 0.05) in particle density were observed between species, mixtures and for the species × mixture interaction. The particle density was highest in the 80:20 and 60:40 mixtures, with values ranging from 1,245 to 1,349 kg m-3. Bulk density and particle density of the pellets were positively correlated with the amount of P. durangensis sawdust included. The mechanical hardness and impact resistance index (IRI) differed significantly (p < 0.05) between groups. The addition of pine sawdust decreased the mechanical hardness of the pellets, up to 24%. The IRI was highest (138) in the Q. sideroxyla pellets (100:0). The mechanical hardness and IRI of the pellets were negatively correlated with the amount of P. durangensis sawdust added. The bulk density of the pellets was negatively correlated with mechanical hardness and IRI. The calorific value of mixtures and the species × mixture interaction differed significantly between groups. Finally, the mean calorific value was highest (19.8 MJ kg-1) in the 20:80 mixture. The calorific value was positively related to the addition of P. durangensis sawdust.

5.
PeerJ ; 8: e9506, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32832261

RESUMEN

BACKGROUND: Forest plantations play an important role in carbon sequestration, helping to mitigate climate change. In this study, survival, biomass, growth rings and annual carbon content storage were evaluated in a mixed Pinus durangensis and P. cooperi plantation that was established after a clear-cutting. The plantation is eight years old and covers an area of 21.40 ha. METHODS: Sixteen sites of 100 m2 were distributed randomly. At each site, two trees distributed proportionally to the diametric categories were destructively sampled (one per tree species). Two cross-sections were cut from each tree: The first at the base of the stump and the second at 1.30 m. The width of tree rings of the first cross-section was measured using a stereoscopic microscope with precision in microns (µm). The year-by-year basal diameter of each tree was recorded and biomass and carbon content was estimated using allometric equations. RESULTS: The estimated survival was 75.2%. The results of the ANOVA showed significant differences between the year-by-year width records of tree rings, the highest value corresponding to the fifth year. The average carbon sequestration per year is 0.30 kg for both studied tree species. CONCLUSIONS: P. durangensis and P. cooperi plantations adapt and develop well in Durango forests when they are established in areas that are subjected to clear-cutting.

6.
Sci Total Environ ; 718: 137313, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32088482

RESUMEN

Identifying the relative importance of human and environmental drivers on fire occurrence in different regions and scales is critical for a sound fire management. Nevertheless, studies analyzing fire occurrence spatial patterns at multiple scales, covering the regional to national levels at multiple spatial resolutions, both in the fire occurrence drivers and in fire density, are very scarce. Furthermore, there is a scarcity of studies that analyze the spatial stationarity in the relationships of fire occurrence and its drivers at multiple scales. The current study aimed at predicting the spatial patterns of fire occurrence at regional and national levels in Mexico, utilizing geographically weighted regression (GWR) to predict fire density, calculated with two different approaches -regular grid density and kernel density - at spatial resolutions from 5 to 50 km, both in the dependent and in the independent human and environmental candidate variables. A better performance of GWR, both in goodness of fit and residual correlation reduction, was observed for prediction of kernel density as opposed to regular grid density. Our study is, to our best knowledge, the first study utilizing GWR to predict fire kernel density, and the first study to utilize GWR considering multiple scales, both in the dependent and independent variables. GWR models goodness of fit increased with fire kernel density search radius (bandwidths), but saturation in predictive capacity was apparent at 15-20 km for most regions. This suggests that this scale has a good potential for operational use in fire prevention and suppression decision-making as a compromise between predictive capability and spatial detail in fire occurrence predictions. This result might be a consequence of the specific spatial patterns of fire occurrence in Mexico and should be analyzed in future studies replicating this methodology elsewhere.

7.
PeerJ ; 7: e8002, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31844562

RESUMEN

BACKGROUND: Spatial genetic structure (SGS) analysis is a powerful approach to quantifying gene flow between trees, thus clarifying the functional connectivity of trees at population and landscape scales. The findings of SGS analysis may be useful for conservation and management of natural populations and plantations. Pinus cembroides is a widely distributed tree species, covering an area of about 2.5 million hectares in Mexico. The aim of this study was to examine five natural seed stands of P. cembroides in the Sierra Madre Occidental to determine the SGS at population (within the seed stand) and landscape (among seed stands) levels in order to establish guidelines for the conservation and management of the species. We hypothesized that P. cembroides, in which the seeds are dispersed by birds and mammals, creates weaker SGS than species with wind-dispersed seeds. METHODS: DNA fingerprinting was performed using the amplified fragment length polymorphism (AFLP) technique. In order to estimate the SGS at population and landscape levels, we measured the geographical (spatial) distance as the Euclidean distance. We also estimated the genetic distances between individuals using the pairwise kinship coefficient. RESULTS: The results showed non-significant autocorrelation in four out of five seed stands studied (i.e., a mainly random distribution in the space of the genetic variants of P. cembroides at population level). DISCUSSION: SGS was detected at the landscape scale, supporting the theory of isolation by distance as a consequence of restricted pollen and seed dispersal. However, the SGS may also have been generated by our sampling strategy. We recommended establishing a close network of seed stands of P. cembroides to prevent greater loss of local genetic variants and alteration of SGS. We recommend seed stands of P. cembroides of a minimum width of 225 m.

8.
PeerJ ; 7: e7085, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31218130

RESUMEN

BACKGROUND: Forest ecosystems are considered among the largest terrestrial carbon sinks. The dynamics of forest carbon depend on where the carbon is stored and its responses to environmental factors, as well as the physiology of the trees. Thus, threatened forest regions with high biodiversity have great scientific importance, such as the Sierra Madre Occidental in Mexico. A comparative analysis of tree species can expand the knowledge of the carbon cycle dynamics and ecological processes in this region. Here, we examined the growth, wood density, and carbon accumulation of two threatened species (Pseudotsuga menziesii and Cupressus lusitanica) to evaluate their hydroclimatic responsiveness. METHODS: The temporal variations in the carbon accumulation patterns of two co-occurring species (P. menziesii and C. lusitanica) and their sensitivity to the local climate were studied using dendroecological techniques, X-ray densitometry, and allometric equations. RESULTS: The results show that the annual carbon accumulation in C. lusitanica is positively associated with the temperature during the current fall, while the carbon accumulation in P. menziesii is correlated with the rainfall during the winter of the previous year. The climatic responses are associated with the intra-annual variations of wood density and ring widths for each species. The ring width was strongly correlated with carbon accumulation in C. lusitanica, while the mean wood density was linked to carbon accumulation in P. menziesii. DISCUSSION: This study has implications for the carbon accumulation rates of both species, revealing differences in the carbon capture patterns in response to climatic variations. Although the species coexist, there are variation in the hydroclimatic sensitivity of the annual carbon sequestered by trunks of trees, which would be associated with tree-ring width and/or wood density, i.e., directly by anatomical features. The results are relevant to analyze the response to the variability of climatic conditions expected in the near future of the tree communities of Sierra Madre Occidental. Therefore, this study provides a basis for modeling the long-term carbon budget projections in terrestrial ecosystems in northern Mexico.

10.
EXCLI J ; 14: 430-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26535036

RESUMEN

To benefit from the use of a waste product such as pine sawdust from a sawmill in Michoacán, Mexico, five different pretreatments for the production of reducing sugars by enzymatic hydrolysis were evaluated (sodium hydroxide, sulfuric acid, steam explosion, organosolv and combined method nitric acid / sodium hydroxide). The main finding of the study was that the pretreatment with 6 % HNO3 and 1 % NaOH led to better yields than those obtained with sodium hydroxide, dilute sulfuric acid, steam explosion, and organosolv pretreatments. Also, HNO3 yields were maximized by the factorial method. With those results the maxima concentration of reducing sugar found was 97.83 ± 1.59, obtained after pretreatment with 7.5 % HNO3 at 120 °C for 30 minutes; followed by 1 % of NaOH at 90 °C for 30 minutes at pH 4.5 for 168 hours with a load enzyme of 25 FPU/g of total carbohydrates. Comparing the results obtained by the authors with those reported in the literature, the combined method was found to be suitable for use in the exploitation of sawdust.

11.
PLoS One ; 10(10): e0140442, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26496189

RESUMEN

The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P. chihuahuana trees and P. chihuahuana tree community and but to specific spatial scales measured by the univariate L-function. The spatial distribution pattern of P. chihuahuana trees was found to be independent of patches of other tree species measured by the bivariate L-function. The spatial distribution was not significantly related to tree density, diameter distribution or tree species diversity. The index of Clark and Evans decreased significantly from the southern to northern plots containing all tree species. Self-thinning due to intra and inter-specific competition-induced mortality is probably the main cause of the decrease in aggregation intensity during the course of population development in this tree community. We recommend the use of larger sampling plots (> 0.25 ha) in uneven-aged and species-rich forest ecosystems to detect less obvious, but important, relationships between spatial tree pattern and functioning and diversity in these forests.


Asunto(s)
Fenómenos Ecológicos y Ambientales , Ecosistema , Picea/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Algoritmos , Conservación de los Recursos Naturales/métodos , Geografía , México , Densidad de Población , Dinámica Poblacional , Árboles/clasificación
12.
J Ethnobiol Ethnomed ; 10: 62, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25179469

RESUMEN

BACKGROUND: Trough collections of plants and interviews with 110 individuals, an ethnobotanical study was conducted in order to determine the knowledge and use plant species in Rayones, Nuevo Leon, Mexico. The aim of this study was to record all useful plants and their uses, to know whether differences exist in the knowledge about the number of species and uses between women and men, and to know if there is a correlation between the age of individuals and knowledge of species and their uses. METHODS: A total of 110 persons were interviewed (56 men, 56 women). Semistructured interviews were carried out. The data were analyzed by means of Student t test and the Pearson Correlation Coeficient. RESULTS: A total of 252 species, 228 genera and 91 families of vascular plants were recorded. Astraceae, Fabaceae and are the most important families with useful species and Agave and Opuntia are the genera with the highest number of useful species. One hundred and thirty six species are considered as medicinal. Agave, Acacia and Citrus are the genera with the highest number of medicinal species. Other uses includes edible, spiritual rituals, construction and ornamentals. There was a non-significant correlation between the person's age and number of species, but a significant very low negative correlation between the person's age and number of uses was found. CONCLUSIONS: Knowing their medicinal uses is an important issue for the people of Rayones. Boiling and preparing infusions are the main ways of using plants by residents. The leaves, the branches, and the fruits are the most commonly used parts. Almost 18% of the flora is used for wood and construction purposes. Several uses such as cosmetic, shampoo, firming skin tonics and health hair products recorded in Rayones has not been reported for other areas in the state of Nuevo León. In Rayones, women have a greater knowledge about plants and their uses than men, particularly, medicinal plants, but, men have a greater knowledge about wood and construction species.


Asunto(s)
Etnobotánica , Adulto , Anciano , Anciano de 80 o más Años , Conducta Ceremonial , Femenino , Humanos , Conocimiento , Masculino , México , Persona de Mediana Edad , Plantas Comestibles , Plantas Medicinales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...