Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(33): 17920-17924, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34062045

RESUMEN

Post-synthetic modification (PSM) of the interpenetrated diamondoid metal-organic framework (Me2 NH2 )[In(BDC-NH2 )2 ] (BDC-NH2 =aminobenzenedicarboxylate) SHF-61 proceeds quantitatively in a single-crystal-to-single-crystal manner to yield the acetamide derivative (Me2 NH2 )[In(BDC-NHC(O)Me)2 ] SHF-62. Continuous breathing behaviour during activation/desolvation is retained upon PSM, but pore closing now leads to ring-flipping to avert steric clash of amide methyl groups of the modified ligands. This triggers a reduction in the amplitude of the breathing deformation in the two dimensions associated with pore diameter, but a large increase in the third dimension associated with pore length. The MOF is thereby converted from predominantly 2D breathing (in SHF-61) to a distinctly 3D breathing motion (in SHF-62) indicating a decoupling of the pore-width and pore-length breathing motions. These breathing motions have been mapped by a series of single-crystal diffraction studies.

2.
J Am Chem Soc ; 142(35): 14903-14913, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32786807

RESUMEN

Flexible metal-organic frameworks (MOFs) undergo structural transformations in response to physical and chemical stimuli. This is hard to control because of feedback between guest uptake and host structure change. We report a family of flexible MOFs based on derivatized amino acid linkers. Their porosity consists of a one-dimensional channel connected to three peripheral pockets. This network structure amplifies small local changes in linker conformation, which are strongly coupled to the guest packing in and the shape of the peripheral pockets, to afford large changes in the global pore geometry that can, for example, segment the pore into four isolated components. The synergy among pore volume, guest packing, and linker conformation that characterizes this family of structures can be determined by the amino acid side chain, because it is repositioned by linker torsion. The resulting control optimizes noncovalent interactions to differentiate the uptake and structure response of host-guest pairs with similar chemistries.

3.
Cryst Growth Des ; 19(10): 5604-5618, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31602177

RESUMEN

A new porous and flexible metal-organic framework (MOF) has been synthesized from the flexible asymmetric linker N-(4-carboxyphenyl)succinamate (CSA) and heptanuclear zinc oxo-clusters of formula [Zn7O2(carboxylate)10DMF2] involving two coordinated terminal DMF ligands. The structural response of this MOF to the removal or exchange of its guest molecules has been probed using a combination of experimental and computational approaches. The topology of the material, involving double linker connections in the a and b directions and single linker connections along the c axis, is shown to be key in the material's anisotropic response. The a and b directions remain locked during guest removal, whereas the c axis linker undergoes large changes significantly reducing the material's void space. The changes to the c axis linker involve a combination of a hinge motion on the linker's rigid side and conformational rearrangements on its flexible end, which were probed in detail during this process despite the presence of crystallographic disorder along this axis, which prevented accurate characterization by experimental methods alone. Although inactive during guest removal, the flexible ends of the a and b axis linkers are observed to play a prominent role during DMF to DMSO solvent exchange, facilitating the exchange reaction arising in the cluster.

4.
Nature ; 565(7738): 213-217, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626943

RESUMEN

Metal-organic frameworks (MOFs) are crystalline synthetic porous materials formed by binding organic linkers to metal nodes: they can be either rigid1,2 or flexible3. Zeolites and rigid MOFs have widespread applications in sorption, separation and catalysis that arise from their ability to control the arrangement and chemistry of guest molecules in their pores via the shape and functionality of their internal surface, defined by their chemistry and structure4,5. Their structures correspond to an energy landscape with a single, albeit highly functional, energy minimum. By contrast, proteins function by navigating between multiple metastable structures using bond rotations of the polypeptide6,7, where each structure lies in one of the minima of a conformational energy landscape and can be selected according to the chemistry of the molecules that interact with the protein. These structural changes are realized through the mechanisms of conformational selection (where a higher-energy minimum characteristic of the protein is stabilized by small-molecule binding) and induced fit (where a small molecule imposes a structure on the protein that is not a minimum in the absence of that molecule)8. Here we show that rotation about covalent bonds in a peptide linker can change a flexible MOF to afford nine distinct crystal structures, revealing a conformational energy landscape that is characterized by multiple structural minima. The uptake of small-molecule guests by the MOF can be chemically triggered by inducing peptide conformational change. This change transforms the material from a minimum on the landscape that is inactive for guest sorption to an active one. Chemical control of the conformation of a flexible organic linker offers a route to modifying the pore geometry and internal surface chemistry and thus the function of open-framework materials.

5.
Chem Sci ; 8(8): 5392-5398, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28970918

RESUMEN

Control of intermolecular interactions is integral to harnessing self-assembly in nature. Here we demonstrate that control of the competition between hydrogen bonds and halogen bonds, the two most highly studied directional intermolecular interactions, can be exerted by choice of solvent (polarity) to direct the self-assembly of co-crystals. Competitive co-crystal formation has been investigated for three pairs of hydrogen bond and halogen bond donors, which can compete for a common acceptor group. These competitions have been examined in seven different solvents. Product formation has been determined and phase purity has been examined by analysis of powder X-ray diffraction patterns. Formation of hydrogen-bonded co-crystals is favoured from less polar solvents and halogen-bonded co-crystals from more polar solvents. The solvent polarity at which the crystal formation switches from hydrogen-bond to halogen-bond dominance depends on the relative strengths of the interactions, but is not a function of the solution-phase interactions alone. The results clearly establish that an appreciation of solvent effects is critical to obtain control of the intermolecular interactions.

6.
Nat Chem ; 9(9): 882-889, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28837170

RESUMEN

Understanding the behaviour of flexible metal-organic frameworks (MOFs)-porous crystalline materials that undergo a structural change upon exposure to an external stimulus-underpins their design as responsive materials for specific applications, such as gas separation, molecular sensing, catalysis and drug delivery. Reversible transformations of a MOF between open- and closed-pore forms-a behaviour known as 'breathing'-typically occur through well-defined crystallographic transitions. By contrast, continuous breathing is rare, and detailed characterization has remained very limited. Here we report a continuous-breathing mechanism that was studied by single-crystal diffraction in a MOF with a diamondoid network, (Me2NH2)[In(ABDC)2] (ABDC, 2-aminobenzene-1,4-dicarboxylate). Desolvation of the MOF in two different solvents leads to two polymorphic activated forms with very different pore openings, markedly different gas-adsorption capacities and different CO2 versus CH4 selectivities. Partial desolvation introduces a gating pressure associated with CO2 adsorption, which shows that the framework can also undergo a combination of stepped and continuous breathing.

7.
Artículo en Inglés | MEDLINE | ID: mdl-24892587

RESUMEN

Metal-organic frameworks (MOFs) are a class of porous crystalline materials of modular design. One of the primary applications of these materials is in the adsorption and separation of gases, with potential benefits to the energy, transport and medical sectors. In situ crystallography of MOFs under gas atmospheres has enabled the behaviour of the frameworks under gas loading to be investigated and has established the precise location of adsorbed gas molecules in a significant number of MOFs. This article reviews progress in such crystallographic studies, which has taken place over the past decade, but has its origins in earlier studies of zeolites, clathrates etc. The review considers studies by single-crystal or powder diffraction using either X-rays or neutrons. Features of MOFs that strongly affect gas sorption behaviour are discussed in the context of in situ crystallographic studies, specifically framework flexibility, and the presence of (organic) functional groups and unsaturated (open) metal sites within pores that can form specific interactions with gas molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...