Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(22): 13165-13178, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34871433

RESUMEN

Base excision repair (BER) is the main pathway protecting cells from the continuous damage to DNA inflicted by reactive oxygen species. BER is initiated by DNA glycosylases, each of which repairs a particular class of base damage. NTHL1, a bifunctional DNA glycosylase, possesses both glycolytic and ß-lytic activities with a preference for oxidized pyrimidine substrates. Defects in human NTHL1 drive a class of polyposis colorectal cancer. We report the first X-ray crystal structure of hNTHL1, revealing an open conformation not previously observed in the bacterial orthologs. In this conformation, the six-helical barrel domain comprising the helix-hairpin-helix (HhH) DNA binding motif is tipped away from the iron sulphur cluster-containing domain, requiring a conformational change to assemble a catalytic site upon DNA binding. We found that the flexibility of hNTHL1 and its ability to adopt an open configuration can be attributed to an interdomain linker. Swapping the human linker sequence for that of Escherichia coli yielded a protein chimera that crystallized in a closed conformation and had a reduced activity on lesion-containing DNA. This large scale interdomain rearrangement during catalysis is unprecedented for a HhH superfamily DNA glycosylase and provides important insight into the molecular mechanism of hNTHL1.


Asunto(s)
Dominio Catalítico , Reparación del ADN , ADN/química , Desoxirribonucleasa (Dímero de Pirimidina)/química , Dominios Proteicos , Secuencia de Aminoácidos , Biocatálisis , ADN/genética , ADN/metabolismo , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Humanos , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Pirimidinas/metabolismo , Homología de Secuencia de Aminoácido
2.
Front Cell Infect Microbiol ; 11: 682635, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150677

RESUMEN

Shigella flexneri, causative agent of bacillary dysentery (shigellosis), uses a type III secretion system (T3SS) as its primary virulence factor. The T3SS injectisome delivers effector proteins into host cells to promote entry and create an important intracellular niche. The injectisome's cytoplasmic sorting platform (SP) is a critical assembly that contributes to substrate selection and energizing secretion. The SP consists of oligomeric Spa33 "pods" that associate with the basal body via MxiK and connect to the Spa47 ATPase via MxiN. The pods contain heterotrimers of Spa33 with one full-length copy associated with two copies of a C-terminal domain (Spa33C). The structure of Spa33C is known, but the precise makeup and structure of the pods in situ remains elusive. We show here that recombinant wild-type Spa33 can be prepared as a heterotrimer that forms distinct stable complexes with MxiK and MxiN. In two-hybrid analyses, association of the Spa33 complex with these proteins occurs via the full-length Spa33 component. Furthermore, these complexes each have distinct biophysical properties. Based on these properties, new high-resolution cryo-electron tomography data and architectural similarities between the Spa33 and flagellar FliM-FliN complexes, we provide a preliminary model of the Spa33 heterotrimers within the SP pods. From these findings and evolving models of SP interfaces and dynamics in the Yersinia and Salmonella T3SS, we suggest a model for SP function in which two distinct complexes come together within the context of the SP to contribute to form the complete pod structures during the recruitment of T3SS secretion substrates.


Asunto(s)
Shigella , Sistemas de Secreción Tipo III , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte de Proteínas , Shigella/metabolismo , Shigella flexneri/genética , Shigella flexneri/metabolismo , Sistemas de Secreción Tipo III/genética
3.
Trends Microbiol ; 29(11): 1024-1033, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33865677

RESUMEN

The bacterial flagellar motor, a remarkable rotary machine, can rapidly switch between counterclockwise (CCW) and clockwise (CW) rotational directions to control the migration behavior of the bacterial cell. The flagellar motor consists of a bidirectional spinning rotor surrounded by torque-generating stator units. Recent high-resolution in vitro and in situ structural studies have revealed stunning details of the individual components of the flagellar motor and their interactions in both the CCW and CW senses. In this review, we discuss these structures and their implications for understanding the molecular mechanisms underlying flagellar rotation and switching.


Asunto(s)
Proteínas Bacterianas , Flagelos , Bacterias , Proteínas Bacterianas/química , Flagelos/química , Proteínas Motoras Moleculares , Rotación , Torque
4.
Cell Signal ; 79: 109875, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33290840

RESUMEN

Sphingolipids and their synthetic enzymes have emerged as critical mediators in numerous diseases including inflammation, aging, and cancer. One enzyme in particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P), has been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. In this review, we will discuss the contributions from the laboratory of Dr. Lina M. Obeid that have defined the roles for several bioactive sphingolipids in signaling and disease with an emphasis on her work defining SK1 in cellular fates and pathobiologies including proliferation, senescence, apoptosis, and inflammation.


Asunto(s)
Envejecimiento/metabolismo , Lisofosfolípidos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Esfingolípidos/metabolismo , Esfingosina/análogos & derivados , Envejecimiento/genética , Envejecimiento/patología , Animales , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Laboratorios , Lisofosfolípidos/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Esfingolípidos/genética , Esfingosina/genética , Esfingosina/metabolismo
5.
Biomolecules ; 10(11)2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138111

RESUMEN

Many bacteria require flagella for the ability to move, survive, and cause infection. The flagellum is a complex nanomachine that has evolved to increase the fitness of each bacterium to diverse environments. Over several decades, molecular, biochemical, and structural insights into the flagella have led to a comprehensive understanding of the structure and function of this fascinating nanomachine. Notably, X-ray crystallography, cryo-electron microscopy (cryo-EM), and cryo-electron tomography (cryo-ET) have elucidated the flagella and their components to unprecedented resolution, gleaning insights into their structural conservation and adaptation. In this review, we focus on recent structural studies that have led to a mechanistic understanding of flagellar assembly, function, and evolution.


Asunto(s)
Adaptación Fisiológica/genética , Bacterias/genética , Proteínas Bacterianas/genética , Flagelos/fisiología , Bacterias/ultraestructura , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Tomografía con Microscopio Electrónico , Flagelos/ultraestructura
6.
Nat Struct Mol Biol ; 27(11): 1041-1047, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32895555

RESUMEN

The bacterial flagellar motor can rotate in counterclockwise (CCW) or clockwise (CW) senses, and transitions are controlled by the phosphorylated form of the response regulator CheY (CheY-P). To dissect the mechanism underlying flagellar rotational switching, we use Borrelia burgdorferi as a model system to determine high-resolution in situ motor structures in cheX and cheY3 mutants, in which motors are locked in either CCW or CW rotation. The structures showed that CheY3-P interacts directly with a switch protein, FliM, inducing a major remodeling of another switch protein, FliG2, and altering its interaction with the torque generator. Our findings lead to a model in which the torque generator rotates in response to an inward flow of H+ driven by the proton motive force, and conformational changes in FliG2 driven by CheY3-P allow the switch complex to interact with opposite sides of the rotating torque generator, facilitating rotational switching.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/metabolismo , Flagelos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Borrelia burgdorferi/química , Borrelia burgdorferi/ultraestructura , Microscopía por Crioelectrón , Flagelos/química , Flagelos/ultraestructura , Modelos Moleculares , Unión Proteica , Conformación Proteica , Mapas de Interacción de Proteínas , Fuerza Protón-Motriz , Rotación
7.
Elife ; 92020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32893817

RESUMEN

The bacterial flagellar motor switches rotational direction between counterclockwise (CCW) and clockwise (CW) to direct the migration of the cell. The cytoplasmic ring (C-ring) of the motor, which is composed of FliG, FliM, and FliN, is known for controlling the rotational sense of the flagellum. However, the mechanism underlying rotational switching remains elusive. Here, we deployed cryo-electron tomography to visualize the C-ring in two rotational biased mutants in Vibrio alginolyticus. We determined the C-ring molecular architectures, providing novel insights into the mechanism of rotational switching. We report that the C-ring maintained 34-fold symmetry in both rotational senses, and the protein composition remained constant. The two structures show FliG conformational changes elicit a large conformational rearrangement of the rotor complex that coincides with rotational switching of the flagellum. FliM and FliN form a stable spiral-shaped base of the C-ring, likely stabilizing the C-ring during the conformational remodeling.


Asunto(s)
Flagelos , Proteínas Motoras Moleculares , Vibrio alginolyticus , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/química , Flagelos/fisiología , Modelos Moleculares , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Conformación Proteica , Rotación , Vibrio alginolyticus/química , Vibrio alginolyticus/citología , Vibrio alginolyticus/fisiología
8.
FEBS Open Bio ; 8(1): 27-40, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29321954

RESUMEN

Sphingosine kinase 1 (SK1) is a lipid kinase whose activity produces sphingosine 1-phosphate, a prosurvival lipid associated with proliferation, angiogenesis, and invasion. SK1 overexpression has been observed in numerous cancers. Recent studies have demonstrated that SK1 proteolysis occurs downstream of the tumor suppressor p53 in response to several DNA-damaging agents. Moreover, loss of SK1 in p53-knockout mice resulted in complete protection from thymic lymphoma, providing evidence that regulation of SK1 constitutes a major tumor suppressor function of p53. Given this profound phenotype, this study aimed to investigate the mechanism by which wild-type p53 regulates proteolysis of SK1 in response to the DNA-damaging agent doxorubicin in breast cancer cells. We find that p53-mediated activation of caspase-2 was required for SK1 proteolysis and that caspase-2 activity significantly alters the levels of endogenous sphingolipids. As p53 is mutated in 50% of all cancers, we extended our studies to investigate whether SK1 is deregulated in the context of triple-negative breast cancer cells (TNBC) harboring a mutation in p53. Indeed, caspase-2 was not activated in these cells and SK1 was not degraded. Moreover, caspase-2 activation was recently shown to be downstream of the CHK1-suppressed pathway in p53-mutant cells, whereby inhibition of the cell cycle kinase CHK1 leads to caspase-2 activation and apoptosis. Indeed, knockdown and inhibition of CHK1 led to the loss of SK1 in p53-mutant TNBC cells, providing evidence that SK1 may be the first identified effector of the CHK1-suppressed pathway.

10.
Oncotarget ; 7(14): 18159-70, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26921248

RESUMEN

The recently discovered CHK1-Suppressed (CS) pathway is activated by inhibition or loss of the checkpoint kinase CHK1, promoting an apoptotic response to DNA damage mediated by caspase-2 in p53-deficient cells. Although functions of the CS-pathway have been investigated biochemically, it remains unclear whether and how CHK1 inhibition can be regulated endogenously and whether this constitutes a key component of the DNA damage response (DDR). Here, we present data that define the first endogenous activation of the CS-pathway whereby, upon DNA damage, wild type p53 acts as an endogenous regulator of CHK1 levels that modulates caspase-2 activation. Moreover, we demonstrate that persistence of CHK1 levels in response to DNA damage in p53-deficient cancer cells, leads to CHK1-mediated activation of NF-κB and induction of NF-κB-regulated genes in cells and in associated tumor-derived microvesicles (TMVs), both of which are abrogated by loss or inhibition of CHK1. These data define a novel role for CHK1 in the DDR pathway as a regulator NF-κB activity. Our data provide evidence that targeting CHK1 in p53-deficient cancers may abrogate NF-κB signaling that is associated with increased cellular survival and chemoresistance.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , FN-kappa B/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Animales , Caspasa 2/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Cisteína Endopeptidasas/metabolismo , Doxorrubicina/farmacología , Activación Enzimática , Células HCT116 , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Células MCF-7 , Ratones , Inhibidor NF-kappaB alfa/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteína p53 Supresora de Tumor/genética
11.
DNA Repair (Amst) ; 14: 17-26, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24382305

RESUMEN

The repair of free-radical oxidative DNA damage is carried out by lesion-specific DNA glycosylases as the first step of the highly conserved base excision repair (BER) pathway. In humans, three orthologs of the prototypical endonuclease VIII (Nei), the Nei-like NEIL1-3 enzymes are involved in the repair of oxidized DNA lesions. In recent years, several genome and cancer single-nucleotide polymorphic variants of the NEIL1 glycosylase have been identified. In this study we characterized four variants of human NEIL1: S82C, G83D, P208S, and ΔE28, and tested their ability to excise pyrimidine-derived lesions such as thymine glycol (Tg), 5-hydroxyuracil (5-OHU), and dihydrouracil (DHU) and the purine-derived guanidinohydantoin (Gh), spiroiminodihydantoin 1 (Sp1), and methylated 2,6-diamino-4-hydroxy-5-formamidopyrimidine (MeFapyG). The P208S variant has near wild-type activity on all substrates tested. The S82C and ΔE28 variants exhibit decreased Tg excision compared to wild-type. G83D displays little to no activity with any of the substrates tested, with the exception of Gh and Sp1. Human NEIL1 is known to undergo editing whereby the lysine at position 242 is recoded into an arginine. The non-edited form of NEIL1 is more efficient at cleaving Tg than the R242 form, but the G83D variant does not cleave Tg regardless of the edited status of NEIL1. The corresponding G86D variant in Mimivirus Nei1 similarly lacks glycosylase activity. A structure of a G86D-DNA complex reveals a rearrangement in the ß4/5 loop comprising Leu84, the highly-conserved void-filling residue, thereby providing a structural rationale for the decreased glycosylase activity of the glycine to aspartate variant.


Asunto(s)
ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , Genoma Humano/genética , Neoplasias/genética , Polimorfismo de Nucleótido Simple , Edición de ARN , Secuencia de Aminoácidos , Biocatálisis , Cristalografía por Rayos X , ADN Glicosilasas/genética , Estabilidad de Enzimas , Humanos , Mimiviridae/enzimología , Modelos Moleculares , Neoplasias/enzimología , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
12.
PLoS One ; 8(4): e61607, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23626702

RESUMEN

Cyclophosphamide (CYP), a commonly prescribed chemotherapy drug, has multiple adverse side effects including alteration of taste. The effects on taste are a cause of concern for patients as changes in taste are often associated with loss of appetite, malnutrition, poor recovery and reduced quality of life. Amifostine is a cytoprotective agent that was previously shown to be effective in preventing chemotherapy-induced mucositis and nephrotoxicity. Here we determined its ability to protect against chemotherapy-induced damage to taste buds using a mouse model of CYP injury. We conducted detection threshold tests to measure changes in sucrose taste sensitivity and found that administration of amifostine 30 mins prior to CYP injection protected against CYP-induced loss in taste sensitivity. Morphological studies showed that pre-treatment with amifostine prevented CYP-induced reduction in the number of fungiform taste papillae and increased the number of taste buds. Immunohistochemical assays for markers of the cell cycle showed that amifostine administration prevented CYP-induced inhibition of cell proliferation and also protected against loss of mature taste cells after CYP exposure. Our results indicate that treatment of cancer patients with amifostine prior to chemotherapy may improve their sensitivity for taste stimuli and protect the taste system from the detrimental effects of chemotherapy.


Asunto(s)
Amifostina/farmacología , Citoprotección , Papilas Gustativas/efectos de los fármacos , Percepción del Gusto/efectos de los fármacos , Gusto/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Recuento de Células , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclofosfamida/efectos adversos , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfolipasa C beta/metabolismo , Papilas Gustativas/fisiología , Percepción del Gusto/fisiología
13.
PLoS One ; 8(7)2013.
Artículo en Inglés | MEDLINE | ID: mdl-29220848

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0061607.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...