Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 12: 640241, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716753

RESUMEN

Long term benefits following short-term administration of high psychedelic doses of serotonergic and dissociative hallucinogens, typified by psilocybin and ketamine respectively, support their potential as treatments for psychiatric conditions such as major depressive disorder. The high psychedelic doses induce perceptual experiences which are associated with therapeutic benefit. There have also been anecdotal reports of these drugs being used at what are colloquially referred to as "micro" doses to improve mood and cognitive function, although currently there are recognized limitations to their clinical and preclinical investigation. In the present studies we have defined a low dose and plasma exposure range in rats for both ketamine (0.3-3 mg/kg [10-73 ng/ml]) and psilocybin/psilocin (0.05-0.1 mg/kg [7-12 ng/ml]), based on studies which identified these as sub-threshold for the induction of behavioral stereotypies. Tests of efficacy were focused on depression-related endophenotypes of anhedonia, amotivation and cognitive dysfunction using low performing male Long Evans rats trained in two food motivated tasks: a progressive ratio (PR) and serial 5-choice (5-CSRT) task. Both acute doses of ketamine (1-3 mg/kg IP) and psilocybin (0.05-0.1 mg/kg SC) pretreatment increased break point for food (PR task), and improved attentional accuracy and a measure of impulsive action (5-CSRT task). In each case, effect size was modest and largely restricted to test subjects characterized as "low performing". Furthermore, both drugs showed a similar pattern of effect across both tests. The present studies provide a framework for the future study of ketamine and psilocybin at low doses and plasma exposures, and help to establish the use of these lower concentrations of serotonergic and dissociative hallucinogens both as a valid scientific construct, and as having a therapeutic utility.

2.
ACS Chem Neurosci ; 10(7): 3284-3295, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31082204

RESUMEN

The 5-HT releaser/reuptake inhibitor fenfluramine has been recently reported to provide benefit as an adjunctive treatment for Dravet and Lennox-Gastaut syndromes, two types of severe childhood epilepsy. Despite its enhancement of 5-HT function, many effects of fenfluramine have been demonstrated to be dependent on 5-HT2C receptor activation, suggesting that 5-HT2C receptor activation may have an anticonvulsant property. The present study was designed to evaluate fenfluramine and 5-HT agonists of varying 5-HT2C agonist selectivity, the relatively nonselective mCPP and Ro 60-0175, and the selective 5-HT2C agonists lorcaserin and CP-809101 across a variety of acute seizure tests conducted in adult rats and mice, which have been instrumental in identifying the majority of clinically efficacious antiepileptic drugs. Tests included the maximal electroshock seizure (MES), MES threshold, and 6 Hz electrical convulsive seizure models and the chemoconvulsant pentylenetetrazole test. The effect of mCPP, lorcaserin, and CP-809101 against electrically evoked seizures in amygdala kindled rats was also investigated. Overall, at doses known to interact with 5-HT2CR, there was no clear class-related effect of these agonists in any test. The only notable antiseizure effect of fenfluramine was inhibition of MES-induced tonic seizures in the rat. The current preclinical studies using the classical acute seizure tests and an amygdala kindling model do not identify a reliable antiseizure effect of fenfluramine, an agent now used in the treatment of human epilepsies, including Dravet syndrome and Lennox-Gastaut syndrome. Given the nature of these epilepsies, early life and/or genetic models may have better construct validity and be more appropriate for further study.


Asunto(s)
Benzazepinas/uso terapéutico , Etilaminas/uso terapéutico , Fenfluramina/uso terapéutico , Indoles/uso terapéutico , Piperazinas/uso terapéutico , Pirazinas/uso terapéutico , Receptor de Serotonina 5-HT2C/metabolismo , Convulsiones/tratamiento farmacológico , Agonistas del Receptor de Serotonina 5-HT2/uso terapéutico , Animales , Benzazepinas/farmacología , Modelos Animales de Enfermedad , Etilaminas/farmacología , Fenfluramina/farmacología , Indoles/farmacología , Ratones , Piperazinas/farmacología , Pirazinas/farmacología , Ratas , Convulsiones/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...