Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(51): e2300681120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38100419

RESUMEN

Idiopathic normal pressure hydrocephalus (iNPH) is an enigmatic neurological disorder that develops after age 60 and is characterized by gait difficulty, dementia, and incontinence. Recently, we reported that heterozygous CWH43 deletions may cause iNPH. Here, we identify mutations affecting nine additional genes (AK9, RXFP2, PRKD1, HAVCR1, OTOG, MYO7A, NOTCH1, SPG11, and MYH13) that are statistically enriched among iNPH patients. The encoded proteins are all highly expressed in choroid plexus and ependymal cells, and most have been associated with cilia. Damaging mutations in AK9, which encodes an adenylate kinase, were detected in 9.6% of iNPH patients. Mice homozygous for an iNPH-associated AK9 mutation displayed normal cilia structure and number, but decreased cilia motility and beat frequency, communicating hydrocephalus, and balance impairment. AK9+/- mice displayed normal brain development and behavior until early adulthood, but subsequently developed communicating hydrocephalus. Together, our findings suggest that heterozygous mutations that impair ventricular epithelial function may contribute to iNPH.


Asunto(s)
Hidrocéfalo Normotenso , Hidrocefalia , Humanos , Ratones , Animales , Adulto , Persona de Mediana Edad , Hidrocéfalo Normotenso/genética , Hidrocéfalo Normotenso/complicaciones , Hidrocefalia/genética , Encéfalo , Plexo Coroideo , Mutación , Proteínas
2.
J Clin Invest ; 133(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847567

RESUMEN

Three sisters, born from consanguineous parents, manifested a unique Müllerian anomaly characterized by uterine hypoplasia with thin estrogen-unresponsive endometrium and primary amenorrhea, but with spontaneous tubal pregnancies. Through whole-exome sequencing followed by comprehensive genetic analysis, a missense variant was identified in the OSR1 gene. We therefore investigated OSR1/OSR1 expression in postpubertal human uteri, and the prenatal and postnatal expression pattern of Osr1/Osr1 in murine developing Müllerian ducts (MDs) and endometrium, respectively. We then investigated whether Osr1 deletion would affect MD development, using WT and genetically engineered mice. Human uterine OSR1/OSR1 expression was found primarily in the endometrium. Mouse Osr1 was expressed prenatally in MDs and Wolffian ducts (WDs), from rostral to caudal segments, in E13.5 embryos. MDs and WDs were absent on the left side and MDs were rostrally truncated on the right side of E13.5 Osr1-/- embryos. Postnatally, Osr1 was expressed in mouse uteri throughout their lifespan, peaking at postnatal days 14 and 28. Osr1 protein was present primarily in uterine luminal and glandular epithelial cells and in the epithelial cells of mouse oviducts. Through this translational approach, we demonstrated that OSR1 in humans and mice is important for MD development and endometrial receptivity and may be implicated in uterine factor infertility.


Asunto(s)
Infertilidad , Conductos Paramesonéfricos , Animales , Femenino , Humanos , Ratones , Embarazo , Endometrio , Células Epiteliales , Conductos Paramesonéfricos/metabolismo , Útero
3.
Eur J Endocrinol ; 189(3): 422-428, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703313

RESUMEN

BACKGROUND: Several rare loss-of-function mutations of delta-like noncanonical notch ligand 1 (DLK1) have been described in non-syndromic children with familial central precocious puberty (CPP). OBJECTIVE: We investigated genetic abnormalities of DLK1 gene in a French cohort of children with idiopathic CPP. Additionally, we explored the pattern of DLK1 serum levels in patients with CPP and in healthy children at puberty, as well as in wild-type female mice. PATIENTS AND METHODS: Genomic DNA was obtained from 121 French index cases with CPP. Automated sequencing of the coding region of the DLK1 gene was performed in all cases. Serum DLK1 levels were measured by enzyme linked immunosorbent assay (ELISA) in 209 individuals, including 191 with normal pubertal development and in female mice during postnatal pubertal maturation. RESULTS: We identified 2 rare pathogenic DLK1 allelic variants: A stop gain variant (c.372C>A; p.Cys124X) and a start loss variant (c.2T>G; p.Met1?, or p.0) in 2 French girls with CPP. Mean serum DLK1 levels were similar between healthy children and idiopathic CPP children. In healthy individuals, DLK1 levels correlated with pubertal stage: In girls, DLK1 decreased between Tanner stages III and V, whereas in boys, DLK1 decreased between Tanner stages II and V (P = .008 and .016, respectively). Serum levels of Dlk1 also decreased in wild-type female mice. CONCLUSIONS: Novel loss-of-function mutations in DLK1 gene were identified in 2 French girls with CPP. Additionally, we demonstrated a pattern of dynamic changes in circulating DLK1 serum levels in humans and mice during pubertal stages, reinforcing the role of this factor in pubertal timing.


Asunto(s)
Pubertad Precoz , Animales , Niño , Femenino , Humanos , Masculino , Ratones , Alelos , Proteínas de Unión al Calcio/genética , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Membrana/genética , Mutación , Pubertad Precoz/genética
4.
Cell Mol Neurobiol ; 43(8): 4103-4116, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37620636

RESUMEN

Heterozygous mutations affecting FOXJ1, a transcription factor governing multiciliated cell development, have been associated with obstructive hydrocephalus in humans. However, factors that disrupt multiciliated ependymal cell function often cause communicating hydrocephalus, raising questions about whether FOXJ1 mutations cause hydrocephalus primarily by blocking cerebrospinal fluid (CSF) flow or by different mechanisms. Here, we show that heterozygous FOXJ1 mutations are also associated with communicating hydrocephalus in humans and cause communicating hydrocephalus in mice. Disruption of one Foxj1 allele in mice leads to incomplete ependymal cell differentiation and communicating hydrocephalus. Mature ependymal cell number and motile cilia number are decreased, and 12% of motile cilia display abnormal axonemes. We observed decreased microtubule attachment to basal bodies, random localization and orientation of basal body patches, loss of planar cell polarity, and a disruption of unidirectional CSF flow. Thus, heterozygous FOXJ1 mutations impair ventricular multiciliated cell differentiation, thereby causing communicating hydrocephalus. CSF flow obstruction may develop secondarily in some patients harboring FOXJ1 mutations. Heterozygous FOXJ1 mutations impair motile cilia structure and basal body alignment, thereby disrupting CSF flow dynamics and causing communicating hydrocephalus.


Asunto(s)
Hidrocefalia , Ratones , Humanos , Animales , Hidrocefalia/genética , Epéndimo/metabolismo , Regulación de la Expresión Génica , Mutación/genética , Diferenciación Celular , Cilios/genética , Cilios/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
5.
Endocrinology ; 164(9)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37585624

RESUMEN

Studies in humans and mice support a role for Makorin RING finger protein 3 (MKRN3) as an inhibitor of gonadotropin-releasing hormone (GnRH) secretion prepubertally, and its loss of function is the most common genetic cause of central precocious puberty in humans. Studies have shown that the gonads can synthesize neuropeptides and express MKRN3/Mkrn3 mRNA. Therefore, we aimed to investigate the spatiotemporal expression pattern of Mkrn3 in gonads during sexual development, and its potential regulation in the functional testicular compartments by gonadotropins. Mkrn3 mRNA was detected in testes and ovaries of wild-type mice at all ages evaluated, with a sexually dimorphic expression pattern between male and female gonads. Mkrn3 expression was highest peripubertally in the testes, whereas it was lower peripubertally than prepubertally in the ovaries. Mkrn3 is expressed primarily in the interstitial compartment of the testes but was also detected at low levels in the seminiferous tubules. In vitro studies demonstrated that Mkrn3 mRNA levels increased in human chorionic gonadotropin (hCG)-treated Leydig cell primary cultures. Acute administration of a GnRH agonist in adult mice increased Mkrn3 expression in testes, whereas inhibition of the hypothalamic-pituitary-gonadal axis by chronic administration of GnRH agonist had the opposite effect. Finally, we found that hCG increased Mkrn3 mRNA levels in a dose-dependent manner. Taken together, our developmental expression analyses, in vitro and in vivo studies show that Mkrn3 is expressed in the testes, predominantly in the interstitial compartment, and that Mkrn3 expression increases after puberty and is responsive to luteinizing hormone/hCG stimulation.


Asunto(s)
Gonadotropina Coriónica , Hormona Luteinizante , Pubertad Precoz , Ubiquitina-Proteína Ligasas , Animales , Femenino , Humanos , Masculino , Ratones , Hormona Liberadora de Gonadotropina , ARN Mensajero , Ubiquitina-Proteína Ligasas/genética
6.
JCI Insight ; 8(8)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37092553

RESUMEN

Makorin ring finger protein 3 (MKRN3) was identified as an inhibitor of puberty initiation with the report of loss-of-function mutations in association with central precocious puberty. Consistent with this inhibitory role, a prepubertal decrease in Mkrn3 expression was observed in the mouse hypothalamus. Here, we investigated the mechanisms of action of MKRN3 in the central regulation of puberty onset. We showed that MKRN3 deletion in hypothalamic neurons derived from human induced pluripotent stem cells was associated with significant changes in expression of genes controlling hypothalamic development and plasticity. Mkrn3 deletion in a mouse model led to early puberty onset in female mice. We found that Mkrn3 deletion increased the number of dendritic spines in the arcuate nucleus but did not alter the morphology of GnRH neurons during postnatal development. In addition, we identified neurokinin B (NKB) as an Mkrn3 target. Using proteomics, we identified insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) as another target of MKRN3. Interactome analysis revealed that IGF2BP1 interacted with MKRN3, along with several members of the polyadenylate-binding protein family. Our data show that one of the mechanisms by which MKRN3 inhibits pubertal initiation is through regulation of prepubertal hypothalamic development and plasticity, as well as through effects on NKB and IGF2BP1.


Asunto(s)
Células Madre Pluripotentes Inducidas , Pubertad Precoz , Humanos , Femenino , Ratones , Animales , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Hipotálamo/metabolismo , Pubertad , Hormona Liberadora de Gonadotropina/metabolismo , Pubertad Precoz/genética , Pubertad Precoz/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
J Clin Endocrinol Metab ; 108(7): 1646-1656, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-36916482

RESUMEN

CONTEXT: Loss-of-function mutations in the maternally imprinted genes, MKRN3 and DLK1, are associated with central precocious puberty (CPP). Mutations in MKRN3 are the most common known genetic etiology of CPP. OBJECTIVE: This work aimed to screen patients with CPP for MKRN3 and DLK1 mutations and analyze the effects of identified mutations on protein function in vitro. METHODS: Participants included 84 unrelated children with CPP (79 girls, 5 boys) and, when available, their first-degree relatives. Five academic medical institutions participated. Sanger sequencing of MKRN3 and DLK1 5' upstream flanking and coding regions was performed on DNA extracted from peripheral blood leukocytes. Western blot analysis was performed to assess protein ubiquitination profiles. RESULTS: Eight heterozygous MKRN3 mutations were identified in 9 unrelated girls with CPP. Five are novel missense mutations, 2 were previously identified in patients with CPP, and 1 is a frameshift variant not previously associated with CPP. No pathogenic variants were identified in DLK1. Girls with MKRN3 mutations had an earlier age of initial pubertal signs and higher basal serum luteinizing hormone and follicle-stimulating hormone compared to girls with CPP without MRKN3 mutations. Western blot analysis revealed that compared to wild-type MKRN3, mutations within the RING finger domain reduced ubiquitination whereas the mutations outside this domain increased ubiquitination. CONCLUSION: MKRN3 mutations were present in 10.7% of our CPP cohort, consistent with previous studies. The novel identified mutations in different domains of MKRN3 revealed different patterns of ubiquitination, suggesting distinct molecular mechanisms by which the loss of MRKN3 results in early pubertal onset.


Asunto(s)
Mutación Missense , Pubertad Precoz , Niño , Masculino , Femenino , Humanos , Pubertad Precoz/genética , Ubiquitina-Proteína Ligasas/genética , Mutación , Ubiquitinación , Pubertad
8.
Endocrinology ; 163(11)2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-35974456

RESUMEN

Makorin ring finger protein 3 (MKRN3) is an important neuroendocrine player in the control of pubertal timing and upstream inhibitor of gonadotropin-releasing hormone secretion. In mice, expression of Mkrn3 in the hypothalamic arcuate and anteroventral periventricular nucleus is high early in life and declines before the onset of puberty. Therefore, we aimed to explore if the persistence of hypothalamic Mkrn3 expression peripubertally would result in delayed puberty. Female mice that received neonatal bilateral intracerebroventricular injections of a recombinant adeno-associated virus expressing Mkrn3 had delayed vaginal opening and first estrus compared with animals injected with control virus. Subsequent estrous cycles and fertility were normal. Interestingly, male mice treated similarly did not exhibit delayed puberty onset. Kiss1, Tac2, and Pdyn mRNA levels were increased in the mediobasal hypothalamus in females at postnatal day 28, whereas kisspeptin and neurokinin B protein levels in the arcuate nucleus were decreased, following Mkrn3 overexpression, compared to controls. Cumulatively, these data suggest that Mkrn3 may directly or indirectly target neuropeptides of Kiss1 neurons to degradation pathways. This mouse model suggests that MKRN3 may be a potential contributor to delayed onset of puberty, in addition to its well-established roles in central precocious puberty and the timing of menarche.


Asunto(s)
Hipotálamo , Maduración Sexual , Ubiquitina-Proteína Ligasas , Animales , Femenino , Hormona Liberadora de Gonadotropina , Hipotálamo/metabolismo , Kisspeptinas/genética , Masculino , Ratones , Neuroquinina B/genética , Maduración Sexual/genética , Ubiquitina-Proteína Ligasas/genética
9.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35173048

RESUMEN

G protein-coupled receptors (GPCRs) play crucial roles in numerous physiological and pathological processes. Mutations in GPCRs that result in loss of function or alterations in signaling can lead to inherited or acquired diseases. Herein, studying prokineticin receptor 2 (PROKR2), we initially identify distinct interactomes for wild-type (WT) versus a mutant (P290S) PROKR2 that causes hypogonadotropic hypogonadism. We then find that both the WT and mutant PROKR2 are targeted for endoplasmic reticulum (ER)-associated degradation, but the mutant is degraded to a greater extent. Further analysis revealed that both forms can also leave the ER to reach the Golgi. However, whereas most of the WT is further transported to the cell surface, most of the mutant is retrieved to the ER. Thus, the post-ER itinerary plays an important role in distinguishing the ultimate fate of the WT versus the mutant. We have further discovered that this post-ER itinerary reduces ER stress induced by the mutant PROKR2. Moreover, we extend the core findings to another model GPCR. Our findings advance the understanding of disease pathogenesis induced by a mutation at a key residue that is conserved across many GPCRs and thus contributes to a fundamental understanding of the diverse mechanisms used by cellular quality control to accommodate misfolded proteins.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Proteostasis/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Animales , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Hipogonadismo/metabolismo , Mutación Missense/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Transducción de Señal
10.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35163633

RESUMEN

Glioblastoma multiforme is the most lethal intrinsic brain tumor. Even with the existing treatment regimen of surgery, radiation, and chemotherapy, the median survival time is only 15-23 months. The invasive nature of this tumor makes its complete removal very difficult, leading to a high recurrence rate of over 90%. Drug delivery to glioblastoma is challenging because of the molecular and cellular heterogeneity of the tumor, its infiltrative nature, and the blood-brain barrier. Understanding the critical characteristics that restrict drug delivery to the tumor is necessary to develop platforms for the enhanced delivery of effective treatments. In this review, we address the impact of tumor invasion, the molecular and cellular heterogeneity of the tumor, and the blood-brain barrier on the delivery and distribution of drugs using potential therapeutic delivery options such as convection-enhanced delivery, controlled release systems, nanomaterial systems, peptide-based systems, and focused ultrasound.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Barrera Hematoencefálica , Humanos
11.
Endocrinology ; 163(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864945

RESUMEN

Gonadotropin-releasing hormone (GnRH) regulates gonadal function via its stimulatory effects on gonadotropin production by pituitary gonadotrope cells. GnRH is released from the hypothalamus in pulses and GnRH pulse frequency differentially regulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) synthesis and secretion. The GnRH receptor (GnRHR) is a G protein-coupled receptor that canonically activates Gα q/11-dependent signaling on ligand binding. However, the receptor can also couple to Gα s and in vitro data suggest that toggling between different G proteins may contribute to GnRH pulse frequency decoding. For example, as we show here, knockdown of Gα s impairs GnRH-stimulated FSH synthesis at low- but not high-pulse frequency in a model gonadotrope-derived cell line. We next used a Cre-lox conditional knockout approach to interrogate the relative roles of Gα q/11 and Gα s proteins in gonadotrope function in mice. Gonadotrope-specific Gα q/11 knockouts exhibit hypogonadotropic hypogonadism and infertility, akin to the phenotypes seen in GnRH- or GnRHR-deficient mice. In contrast, under standard conditions, gonadotrope-specific Gα s knockouts produce gonadotropins at normal levels and are fertile. However, the LH surge amplitude is blunted in Gα s knockout females and postgonadectomy increases in FSH and LH are reduced both in males and females. These data suggest that GnRH may signal principally via Gα q/11 to stimulate gonadotropin production, but that Gα s plays important roles in gonadotrope function in vivo when GnRH secretion is enhanced.


Asunto(s)
Cromograninas/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gs/fisiología , Gonadotrofos/metabolismo , Gonadotropinas/metabolismo , Animales , Castración , Línea Celular , Cromograninas/genética , Femenino , Fertilidad/genética , Fertilidad/fisiología , Hormona Folículo Estimulante de Subunidad beta/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Regulación de la Expresión Génica/fisiología , Hormona Liberadora de Gonadotropina/fisiología , Gonadotropinas/genética , Células HEK293 , Humanos , Hormona Luteinizante/genética , Hormona Luteinizante/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores LHRH/genética , Receptores LHRH/fisiología , Maduración Sexual , Transducción de Señal/fisiología
12.
Elife ; 102021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34494548

RESUMEN

Hypothalamic Kiss1 neurons control gonadotropin-releasing hormone release through the secretion of kisspeptin. Kiss1 neurons serve as a nodal center that conveys essential regulatory cues for the attainment and maintenance of reproductive function. Despite this critical role, the mechanisms that control kisspeptin synthesis and release remain largely unknown. Using Drop-Seq data from the arcuate nucleus of adult mice and in situ hybridization, we identified Nescient Helix-Loop-Helix 2 (Nhlh2), a transcription factor of the basic helix-loop-helix family, to be enriched in Kiss1 neurons. JASPAR analysis revealed several binding sites for NHLH2 in the Kiss1 and Tac2 (neurokinin B) 5' regulatory regions. In vitro luciferase assays evidenced a robust stimulatory action of NHLH2 on human KISS1 and TAC3 promoters. The recruitment of NHLH2 to the KISS1 and TAC3 promoters was further confirmed through chromatin immunoprecipitation. In vivo conditional ablation of Nhlh2 from Kiss1 neurons using Kiss1Cre:Nhlh2fl/fl mice induced a male-specific delay in puberty onset, in line with a decrease in arcuate Kiss1 expression. Females retained normal reproductive function albeit with irregular estrous cycles. Further analysis of male Kiss1Cre:Nhlh2fl/fl mice revealed higher susceptibility to metabolic challenges in the release of luteinizing hormone and impaired response to leptin. Overall, in Kiss1 neurons, Nhlh2 contributes to the metabolic regulation of kisspeptin and NKB synthesis and release, with implications for the timing of puberty onset and regulation of fertility in male mice.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Kisspeptinas/metabolismo , Neuronas/fisiología , Maduración Sexual/fisiología , Animales , Línea Celular , Cromatina , ADN/genética , Estradiol/farmacología , Femenino , Fertilidad , Regulación de la Expresión Génica/efectos de los fármacos , Inmunoprecipitación , Kisspeptinas/genética , Kisspeptinas/farmacología , Leptina/farmacología , Hormona Luteinizante/metabolismo , Masculino , Ratones , Ratones Noqueados , Fragmentos de Péptidos/farmacología , Reacción en Cadena de la Polimerasa/métodos , Factores Sexuales , Sustancia P/análogos & derivados , Sustancia P/farmacología
13.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34380733

RESUMEN

Idiopathic normal pressure hydrocephalus (iNPH) is a common neurological disorder that is characterized by enlarged cerebral ventricles, gait difficulty, incontinence, and dementia. iNPH usually develops after the sixth decade of life in previously asymptomatic individuals. We recently reported that loss-of-function deletions in CWH43 lead to the development of iNPH in a subgroup of patients, but how this occurs is poorly understood. Here, we show that deletions in CWH43 decrease expression of the cell adhesion molecule, L1CAM, in the brains of CWH43 mutant mice and in human HeLa cells harboring a CWH43 deletion. Loss-of-function mutations in L1CAM are a common cause of severe neurodevelopmental defects that include congenital X-linked hydrocephalus. Mechanistically, we find that CWH43 deletion leads to decreased N-glycosylation of L1CAM, decreased association of L1CAM with cell membrane lipid microdomains, increased L1CAM cleavage by plasmin, and increased shedding of cleaved L1CAM in the cerebrospinal fluid. CWH43 deletion also decreased L1CAM nuclear translocation, suggesting decreased L1CAM intracellular signaling. Importantly, the increase in L1CAM cleavage occurred primarily in the ventricular and subventricular zones where brain CWH43 is most highly expressed. Thus, CWH43 deletions may contribute to adult-onset iNPH by selectively downregulating L1CAM in the ventricular and subventricular zone.


Asunto(s)
Presión del Líquido Cefalorraquídeo , Fibrinolisina/metabolismo , Hidrocefalia/metabolismo , Hidrocefalia/patología , Proteínas de la Membrana/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Animales , Encéfalo/patología , Regulación hacia Abajo , Eliminación de Gen , Regulación de la Expresión Génica , Células HeLa , Humanos , Lípidos/química , Imagen por Resonancia Magnética , Proteínas de la Membrana/genética , Ratones , Molécula L1 de Adhesión de Célula Nerviosa/genética , Unión Proteica , Dominios Proteicos , ARN
14.
EMBO Mol Med ; 13(3): e13249, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33459505

RESUMEN

Idiopathic normal pressure hydrocephalus (iNPH) is a neurological disorder that occurs in about 1% of individuals over age 60 and is characterized by enlarged cerebral ventricles, gait difficulty, incontinence, and cognitive decline. The cause and pathophysiology of iNPH are largely unknown. We performed whole exome sequencing of DNA obtained from 53 unrelated iNPH patients. Two recurrent heterozygous loss of function deletions in CWH43 were observed in 15% of iNPH patients and were significantly enriched 6.6-fold and 2.7-fold, respectively, when compared to the general population. Cwh43 modifies the lipid anchor of glycosylphosphatidylinositol-anchored proteins. Mice heterozygous for CWH43 deletion appeared grossly normal but displayed hydrocephalus, gait and balance abnormalities, decreased numbers of ependymal cilia, and decreased localization of glycosylphosphatidylinositol-anchored proteins to the apical surfaces of choroid plexus and ependymal cells. Our findings provide novel mechanistic insights into the origins of iNPH and demonstrate that it represents a distinct disease entity.


Asunto(s)
Hidrocéfalo Normotenso , Animales , Humanos , Hidrocéfalo Normotenso/genética , Ratones
15.
J Neurosurg Case Lessons ; 1(3): CASE2032, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36034506

RESUMEN

BACKGROUND: Placement of a ventriculoperitoneal (VP) shunt is an effective treatment for several disorders of cerebrospinal fluid flow. A rare complication involves postoperative migration of the distal catheter out of the intraperitoneal compartment and into the subcutaneous space. Several theories attempt to explain this phenomenon, but the mechanism remains unclear. OBSERVATIONS: The authors report the case of a 37-year-old nonobese woman who underwent placement of a VP shunt for idiopathic intracranial hypertension. Postoperatively, the distal catheter of the VP shunt migrated into the subcutaneous space on three occasions despite the use of multiple surgical techniques, including open and laparoscopic methods of abdominal catheter placement. Notably, the patient repeatedly displayed radiographic evidence of chronic bowel distention consistent with increased intraperitoneal pressure. LESSONS: In this case, the mechanism of catheter migration into the subcutaneous space did not appear to be caused by pulling of the catheter from above but rather by expulsion of the catheter from the peritoneum. Space in the subcutaneous tissues caused by open surgical placement of the catheter was permissive for this process. Patients with chronic increased intraabdominal pressure, such as that caused by bowel distention, obesity, or Valsalva maneuvers, may be at increased risk for distal catheter migration.

16.
J Endocr Soc ; 4(7): bvaa059, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32587933

RESUMEN

A critical body weight is necessary for pubertal development, an effect mediated in part by leptin. The potential regulation by leptin of Makorin Ring Finger Protein 3 (MKRN3), in which loss-of-function mutations are the most common genetic cause of central precocious puberty, has not been previously explored. In mice, expression of Mkrn3 in the hypothalamic arcuate nucleus is high early in life and declines before the onset of puberty. Therefore, we aimed to explore if leptin contributes to the decrease in hypothalamic Mkrn3 mRNA levels observed in mice during pubertal development. We first used a leptin-deficient (ob/ob) mouse model. Mkrn3 mRNA levels in the mediobasal hypothalamus (MBH), which includes the arcuate nucleus, and in the preoptic area (POA), both showed a significant decrease with age from postnatal day (PND) 12 to PND30 in ob/ob mice in both males and females, similar to that observed in wild-type mice. To further explore the effects of leptin on Mkrn3 expression, we exposed prepubertal wild-type mice to high levels of leptin from age PND9-12, which did not result in any significant difference in Mkrn3 expression levels in either the MBH or POA. In summary, regulation of Mkrn3 expression by leptin was not observed in either the MBH or the POA, 2 hypothalamic sites important for pubertal maturation. These data suggest that the decline in Mkrn3 at the onset of puberty may occur independently of leptin and support our hypothesis that MKRN3 is a bona fide controller of puberty initiation.

17.
J Clin Invest ; 130(8): 4486-4500, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32407292

RESUMEN

The identification of loss-of-function mutations in MKRN3 in patients with central precocious puberty in association with the decrease in MKRN3 expression in the medial basal hypothalamus of mice before the initiation of reproductive maturation suggests that MKRN3 is acting as a brake on gonadotropin-releasing hormone (GnRH) secretion during childhood. In the current study, we investigated the mechanism by which MKRN3 prevents premature manifestation of the pubertal process. We showed that, as in mice, MKRN3 expression is high in the hypothalamus of rats and nonhuman primates early in life, decreases as puberty approaches, and is independent of sex steroid hormones. We demonstrated that Mkrn3 is expressed in Kiss1 neurons of the mouse hypothalamic arcuate nucleus and that MKRN3 repressed promoter activity of human KISS1 and TAC3, 2 key stimulators of GnRH secretion. We further showed that MKRN3 has ubiquitinase activity, that this activity is reduced by MKRN3 mutations affecting the RING finger domain, and that these mutations compromised the ability of MKRN3 to repress KISS1 and TAC3 promoter activity. These results indicate that MKRN3 acts to prevent puberty initiation, at least in part, by repressing KISS1 and TAC3 transcription and that this action may involve an MKRN3-directed ubiquitination-mediated mechanism.


Asunto(s)
Kisspeptinas/biosíntesis , Neuronas/metabolismo , Pubertad Precoz/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/patología , Femenino , Regulación de la Expresión Génica , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Células HEK293 , Humanos , Kisspeptinas/genética , Masculino , Ratones , Neuroquinina B/genética , Neuroquinina B/metabolismo , Neuronas/patología , Regiones Promotoras Genéticas , Pubertad Precoz/genética , Pubertad Precoz/patología , Ratas Sprague-Dawley , Transcripción Genética , Ubiquitina-Proteína Ligasas/genética
18.
J Endocr Soc ; 3(5): 979-995, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31041429

RESUMEN

MKRN3 mutations represent the most common genetic cause of central precocious puberty (CPP) but associations between genotype and clinical features have not been extensively explored. This systematic review and meta-analysis investigated genotype-phenotype associations and prevalence of MKRN3 mutations in CPP. The search was conducted in seven electronic databases (Cochrane, EMBASE, LILACS, LIVIVO, PubMed, Scopus, and Web of Science) for articles published until 4 September 2018. Studies evaluating MKRN3 mutations in patients with CPP were considered eligible. A total of 22 studies, studying 880 subjects with CPP, fulfilled the inclusion criteria. Eighty-nine subjects (76 girls) were identified as harboring MKRN3 mutations. Girls, compared with boys, exhibited earlier age at pubertal onset (median, 6.0 years; range, 3.0 to 7.0 vs 8.5 years; range, 5.9 to 9.0; P < 0.001), and higher basal FSH levels (median, 4.3 IU/L; range, 0.7 to 13.94 IU/L vs 2.45 IU/L; range, 0.8 to 13.70 IU/L; P = 0.003), and bone age advancement (ΔBA; median, 2.3 years; range, -0.9 to 5.2 vs 1.2 years; range, 0.0 to 2.3; P = 0.01). Additional dysmorphisms were uncommon. A total of 14 studies evaluating 857 patients were included for quantitative analysis, with a pooled overall mutation prevalence of 9.0% (95% CI, 0.04 to 0.15). Subgroup analysis showed that prevalence estimates were higher in males, familial cases, and in non-Asian countries. In conclusion, MKRN3 mutations are associated with nonsyndromic CPP and manifest in a sex-dimorphic manner, with girls being affected earlier. They represent a common cause of CPP in western countries, especially in boys and familial cases.

19.
J Exp Clin Cancer Res ; 38(1): 36, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30683134

RESUMEN

BACKGROUND: Glioblastoma is a malignant brain tumor characterized by rapid growth, diffuse invasion and therapeutic resistance. We recently used microRNA expression profiles to subclassify glioblastoma into five genetically and clinically distinct subclasses, and showed that microRNAs both define and contribute to the phenotypes of these subclasses. Here we show that miR-29a activates a multi-faceted growth and invasion program that promotes glioblastoma aggressiveness. METHODS: microRNA expression profiles from 197 glioblastomas were analyzed to identify the candidate miRNAs that are correlated to glioblastoma aggressiveness. The candidate miRNA, miR-29a, was further studied in vitro and in vivo. RESULTS: Members of the miR-29 subfamily display increased expression in the two glioblastoma subclasses with the worst prognoses (astrocytic and neural). We observed that miR-29a is among the microRNAs that are most positively-correlated with PTEN copy number in glioblastoma, and that miR-29a promotes glioblastoma growth and invasion in part by targeting PTEN. In PTEN-deficient glioblastoma cells, however, miR-29a nevertheless activates AKT by downregulating the metastasis suppressor, EphB3. In addition, miR-29a robustly promotes invasion in PTEN-deficient glioblastoma cells by repressing translation of the Sox4 transcription factor, and this upregulates the invasion-promoting protein, HIC5. Indeed, we identified Sox4 as the most anti-correlated predicted target of miR-29a in glioblastoma. Importantly, inhibition of endogenous miR-29a decreases glioblastoma growth and invasion in vitro and in vivo, and increased miR-29a expression in glioblastoma specimens correlates with decreased patient survival. CONCLUSIONS: Taken together, these data identify miR-29a as a master regulator of glioblastoma growth and invasion.


Asunto(s)
Proliferación Celular/genética , Glioblastoma/genética , MicroARNs/genética , Invasividad Neoplásica/genética , Animales , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Masculino , Ratones , Invasividad Neoplásica/patología , Proteína Oncogénica v-akt/genética , Fosfohidrolasa PTEN/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Endocrinology ; 160(1): 57-67, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30517625

RESUMEN

The hypothalamic decapeptide, GnRH, is the gatekeeper of mammalian reproductive development and function. Activation of specific, high-affinity cell surface receptors (GnRH receptors) on gonadotropes by GnRH triggers signal transduction cascades to stimulate the coordinated synthesis and secretion of the pituitary gonadotropins FSH and LH. These hormones direct gonadal steroidogenesis and gametogenesis, making their tightly regulated production and secretion essential for normal sexual maturation and reproductive health. FSH and LH are glycoprotein heterodimers comprised of a common α-subunit and a unique ß-subunit (FSHß and LHß, respectively), which determines the biological specificity of the gonadotropins. The unique ß-subunit is the rate-limiting step for the production of the mature gonadotropins. Therefore, FSH synthesis is regulated at the transcriptional level by Fshb gene expression. The overarching goal of this review is to expand our understanding of the mechanisms and pathways underlying the carefully orchestrated control of FSH synthesis and secretion by GnRH, focusing on the transcriptional regulation of the Fshb gene. Identification of these regulatory mechanisms is not only fundamental to our understanding of normal reproductive function but will also provide a context for the elucidation of the pathophysiology of reproductive disorders and infertility to lead to potential new therapeutic approaches.


Asunto(s)
Hormona Folículo Estimulante de Subunidad beta/genética , Hormona Liberadora de Gonadotropina/metabolismo , Animales , Femenino , Hormona Folículo Estimulante de Subunidad beta/metabolismo , Regulación de la Expresión Génica , Hormona Liberadora de Gonadotropina/genética , Humanos , Hormona Luteinizante/genética , Hormona Luteinizante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...