Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(21): e2311467, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38241649

RESUMEN

Successful and selective inhibition of the cytosolic protein-protein interaction (PPI) between nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associating protein 1 (Keap1) can enhance the antioxidant response, with the potential for a therapeutic effect in a range of settings including in neurodegenerative disease (ND). Small molecule inhibitors have been developed, yet many have off-target effects, or are otherwise limited by poor cellular permeability. Peptide-based strategies have also been attempted to enhance specificity, yet face challenges due to susceptibility to degradation and lack of cellular penetration. Herein, these barriers are overcome utilizing a polymer-based proteomimetics. The protein-like polymer (PLP) consists of a synthetic, lipophilic polymer backbone displaying water soluble Keap1-binding peptides on each monomer unit forming a brush polymer architecture. The PLPs are capable of engaging Keap1 and displacing the cellular protective transcription factor Nrf2, which then translocates to the nucleus, activating the antioxidant response element (ARE). PLPs exhibit increased Keap1 binding affinity by several orders of magnitude compared to free peptides, maintain serum stability, are cell-penetrant, and selectively activate the ARE pathway in cells, including in primary cortical neuronal cultures. Keap1/Nrf2-inhibitory PLPs have the potential to impact the treatment of disease states associated with dysregulation of oxidative stress, such as NDs.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Polímeros , Unión Proteica , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/química , Factor 2 Relacionado con NF-E2/metabolismo , Polímeros/química , Humanos , Animales , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Elementos de Respuesta Antioxidante , Neuronas/metabolismo , Neuronas/efectos de los fármacos
2.
J Am Chem Soc ; 145(20): 11185-11194, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37184379

RESUMEN

Nanoparticles that undergo a localized morphology change to target areas of inflammation have been previously developed but are limited by their lack of biodegradability. In this paper, we describe a low-ring-strain cyclic olefin monomer, 1,3-dimethyl-2-phenoxy-1,3,4,7-tetrahydro-1,3,2-diazaphosphepine 2-oxide (MePTDO), that rapidly polymerizes via ring-opening metathesis polymerization at room temperature to generate well-defined degradable polyphosphoramidates with high monomer conversion (>84%). Efficient MePTDO copolymerizations with norbornene-based monomers are demonstrated, including a norbornenyl monomer functionalized with a peptide substrate for inflammation-associated matrix metalloproteinases (MMPs). The resulting amphiphilic peptide brush copolymers self-assembled in aqueous solution to generate micellar nanoparticles (30 nm in diameter) which exhibit excellent cyto- and hemocompatibility and undergo MMP-induced assembly into micron-scale aggregates. As MMPs are upregulated in the heart postmyocardial infarction (MI), the MMP-responsive micelles were applied to target and accumulate in the infarcted heart following intravenous administration in a rat model of MI. These particles displayed a distinct biodistribution and clearance pattern in comparison to nondegradable analogues. Specifically, accumulation at the site of MI competed with elimination predominantly through the kidney rather than the liver. Together, these results suggest this as a promising new biodegradable platform for inflammation targeted delivery.


Asunto(s)
Infarto del Miocardio , Nanopartículas , Ratas , Animales , Micelas , Distribución Tisular , Péptidos , Inflamación , Metaloproteinasas de la Matriz
4.
Sci Rep ; 12(1): 21886, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36535979

RESUMEN

Hepatocellular carcinoma (HCC) is an aggressive liver cancer with limited effective treatment options. In this study, we selected TLR agonists imiquimod (IMQ), gardiquimod (GARD), GS-9620 and DSR 6434, and a small molecule checkpoint inhibitor, BMS-202, for characterization of drug loading and release from radiopaque embolic beads (DC Bead LUMI) for potential use in image-guided transarterial embolization (TACE) of HCC. The maximum drug loading capacity and amount of drug released over time were determined by high performance liquid chromatography and compared with the commonly used anthracycline, doxorubicin hydrochloride (Dox). Maximum drug loading was 204.54 ± 3.87, 65.28 ± 3.09, 65.95 ± 6.96, 65.97 ± 1.54, and 148.05 ± 2.24 mg of drug per milliliter of DC Bead LUMI for Dox, GARD, DSR 6434, IMQ, and BMS-202, respectively. Fast loading and subsequent rapid release in saline were observed for IMQ, GARD, and DSR 6434. These drugs could also be partially removed from the beads by repeated washing with de-ionized water suggesting weak interaction with the beads. Aggregation of IMQ was observed in water and saline. GS-9620 partially decomposed in the solubilizing solution, so loading and release were not characterized. Compared to TLR agonists, slower loading and release were observed for Dox and BMS-202. Potential factors influencing drug loading into and release from DC Bead LUMI including steric hinderance, hydrophobicity, drug pKa, and the electrostatic nature of the beads are discussed. The maximum loading capacity of BMS-202 and Dox in DC Bead LUMI exceeded the maximum theoretical loading capacity of the beads expected from ionic interaction alone suggesting additional drug-bead or drug-drug interactions may play a role. Slightly more release was observed for BMS-202 at early time points followed by a slower release compared to Dox. Further study of these drug-bead combinations is warranted in search of new tools for locoregional delivery of immune-modulating agents for treatment of HCC via drug-eluting bead chemoembolization.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Quimioembolización Terapéutica/métodos , Doxorrubicina/química , Antibióticos Antineoplásicos/química , Microesferas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...