Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 7(8): 797-801, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27563405

RESUMEN

Optimization of pyridine-based noncatalytic site integrase inhibitors (NCINIs) based on compound 2 has led to the discovery of molecules capable of inhibiting virus harboring N124 variants of HIV integrase (IN) while maintaining minimal contribution of enterohepatic recirculation to clearance in rat. Structure-activity relationships at the C6 position established chemical space where the extent of enterohepatic recirculation in the rat is minimized. Desymmetrization of the C4 substituent allowed for potency optimization against virus having the N124 variant of integrase. Combination of these lessons led to the discovery of compound 20, having balanced serum-shifted antiviral potency and minimized excretion in to the biliary tract in rat, potentially representing a clinically viable starting point for a new treatment option for individuals infected with HIV.

2.
J Am Chem Soc ; 126(47): 15354-5, 2004 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-15563142

RESUMEN

A one-pot, two-step process that transforms terminal alkynes into ethyl methyl-substituted benzylic quaternary carbon centers is described. (E)-2,2-Disubstituted-1-alkenyldimethylalanes have been shown to participate in 1,2-alkyl migration from aluminum to carbon with concomitant arylation at the 2-position to furnish ethyl methyl-substituted benzylic quaternary carbon centers, when reacted intramolecularly with aryl halides and triflates in the presence of a Pd(0) catalyst. The protocol is initiated with Cp2ZrCl2-catalyzed methylalumination of terminal alkynes followed by palladium-catalyzed intramolecular arylation of the resulting (E)-2,2-disubstituted-1-alkenyldimethylalanes, leading to 1,2-methyl shift from aluminum to carbon. In that sequence, a total of three new C-C single bonds are made, and two of the three alkyl groups on Me3Al transferred to the substrate on vicinal carbons. This method was applied to a variety of substrates, and the mechanism was investigated by deuterium-labeling experiments, which revealed that protodealumination of the final dialkylaluminum triflate or halide intermediates by CH3CN results in the formation of the fourth bond in the course of the transformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...