Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 13(11): 2370-2393, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584601

RESUMEN

Patients with H3K27M-mutant diffuse midline glioma (DMG) have no proven effective therapies. ONC201 has recently demonstrated efficacy in these patients, but the mechanism behind this finding remains unknown. We assessed clinical outcomes, tumor sequencing, and tissue/cerebrospinal fluid (CSF) correlate samples from patients treated in two completed multisite clinical studies. Patients treated with ONC201 following initial radiation but prior to recurrence demonstrated a median overall survival of 21.7 months, whereas those treated after recurrence had a median overall survival of 9.3 months. Radiographic response was associated with increased expression of key tricarboxylic acid cycle-related genes in baseline tumor sequencing. ONC201 treatment increased 2-hydroxyglutarate levels in cultured H3K27M-DMG cells and patient CSF samples. This corresponded with increases in repressive H3K27me3 in vitro and in human tumors accompanied by epigenetic downregulation of cell cycle regulation and neuroglial differentiation genes. Overall, ONC201 demonstrates efficacy in H3K27M-DMG by disrupting integrated metabolic and epigenetic pathways and reversing pathognomonic H3K27me3 reduction. SIGNIFICANCE: The clinical, radiographic, and molecular analyses included in this study demonstrate the efficacy of ONC201 in H3K27M-mutant DMG and support ONC201 as the first monotherapy to improve outcomes in H3K27M-mutant DMG beyond radiation. Mechanistically, ONC201 disrupts integrated metabolic and epigenetic pathways and reverses pathognomonic H3K27me3 reduction. This article is featured in Selected Articles from This Issue, p. 2293.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Histonas/genética , Resultado del Tratamiento , Epigénesis Genética , Mutación
2.
Front Oncol ; 12: 922928, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35978801

RESUMEN

Pediatric high-grade glioma (pHGG), including both diffuse midline glioma (DMG) and non-midline tumors, continues to be one of the deadliest oncologic diagnoses (both henceforth referred to as "pHGG"). Targeted therapy options aimed at key oncogenic receptor tyrosine kinase (RTK) drivers using small-molecule RTK inhibitors has been extensively studied, but the absence of proper in vivo modeling that recapitulate pHGG biology has historically been a research challenge. Thankfully, there have been many recent advances in animal modeling, including Cre-inducible transgenic models, as well as intra-uterine electroporation (IUE) models, which closely recapitulate the salient features of human pHGG tumors. Over 20% of pHGG have been found in sequencing studies to have alterations in platelet derived growth factor-alpha (PDGFRA), making growth factor modeling and inhibition via targeted tyrosine kinases a rich vein of interest. With commonly found alterations in other growth factors, including FGFR, EGFR, VEGFR as well as RET, MET, and ALK, it is necessary to model those receptors, as well. Here we review the recent advances in murine modeling and precision targeting of the most important RTKs in their clinical context. We additionally provide a review of current work in the field with several small molecule RTK inhibitors used in pre-clinical or clinical settings for treatment of pHGG.

3.
J Clin Invest ; 130(10): 5313-5325, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32603316

RESUMEN

Pediatric and adult high-grade gliomas (HGGs) frequently harbor PDGFRA alterations. We hypothesized that cotreatment with everolimus may improve the efficacy of dasatinib in PDGFRα-driven glioma through combinatorial synergism and increased tumor accumulation of dasatinib. We performed dose-response, synergism, P-glycoprotein inhibition, and pharmacokinetic studies in in vitro and in vivo human and mouse models of HGG. Six patients with recurrent PDGFRα-driven glioma were treated with dasatinib and everolimus. We found that dasatinib effectively inhibited the proliferation of mouse and human primary HGG cells with a variety of PDGFRA alterations. Dasatinib exhibited synergy with everolimus in the treatment of HGG cells at low nanomolar concentrations of both agents, with a reduction in mTOR signaling that persisted after dasatinib treatment alone. Prolonged exposure to everolimus significantly improved the CNS retention of dasatinib and extended the survival of PPK tumor-bearing mice (mutant TP53, mutant PDGFRA, H3K27M). Six pediatric patients with glioma tolerated this combination without significant adverse events, and 4 patients with recurrent disease (n = 4) had a median overall survival of 8.5 months. Our results show that the efficacy of dasatinib treatment of PDGFRα-driven HGG was enhanced with everolimus and suggest a promising route for improving targeted therapy for this patient population.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Dasatinib/administración & dosificación , Everolimus/administración & dosificación , Glioma/tratamiento farmacológico , Glioma/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Adolescente , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias Encefálicas/metabolismo , Proliferación Celular/efectos de los fármacos , Niño , Preescolar , Dasatinib/farmacocinética , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Everolimus/farmacocinética , Femenino , Expresión Génica , Glioma/metabolismo , Humanos , Masculino , Ratones , Terapia Molecular Dirigida , Embarazo , Células Tumorales Cultivadas
4.
Biochimie ; 107 Pt B: 167-87, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25230087

RESUMEN

Reversible phosphorylation of proteins, performed by kinases and phosphatases, is the major post translational protein modification in eukaryotic cells. This intracellular event represents a critical regulatory mechanism of several signaling pathways and can be related to a vast array of diseases, including cancer. Cancer research has produced increasing evidence that kinase and phosphatase activity can be compromised by mutations and also by miRNA silencing, performed by small non-coding and endogenously produced RNA molecules that lead to translational repression. miRNAs are believed to target about one-third of human mRNAs while a single miRNA may target about 200 transcripts simultaneously. Regulation of the phosphorylation balance by miRNAs has been a topic of intense research over the last years, spanning topics going as far as cancer aggressiveness and chemotherapy resistance. By addressing recent studies that have shown miRNA expression patterns as phenotypic signatures of cancers and how miRNA influence cellular processes such as apoptosis, cell cycle control, angiogenesis, inflammation and DNA repair, we discuss how kinases, phosphatases and miRNAs cooperatively act in cancer biology.


Asunto(s)
MicroARNs , Neoplasias/enzimología , Neoplasias/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Quinasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Proteínas Quinasas/genética , Procesamiento Proteico-Postraduccional , Estabilidad del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...