Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 211(8): 1551-70, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25049335

RESUMEN

In Alzheimer's disease (AD), abnormal sphingolipid metabolism has been reported, although the pathogenic consequences of these changes have not been fully characterized. We show that acid sphingomyelinase (ASM) is increased in fibroblasts, brain, and/or plasma from patients with AD and in AD mice, leading to defective autophagic degradation due to lysosomal depletion. Partial genetic inhibition of ASM (ASM(+/-)) in a mouse model of familial AD (FAD; amyloid precursor protein [APP]/presenilin 1 [PS1]) ameliorated the autophagocytic defect by restoring lysosomal biogenesis, resulting in improved AD clinical and pathological findings, including reduction of amyloid-ß (Aß) deposition and improvement of memory impairment. Similar effects were noted after pharmacologic restoration of ASM to the normal range in APP/PS1 mice. Autophagic dysfunction in neurons derived from FAD patient induced pluripotent stem cells (iPSCs) was restored by partial ASM inhibition. Overall, these results reveal a novel mechanism of ASM pathogenesis in AD that leads to defective autophagy due to impaired lysosomal biogenesis and suggests that partial ASM inhibition is a potential new therapeutic intervention for the disease.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Autofagia , Lisosomas/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Fosfatasa Alcalina/metabolismo , Péptidos beta-Amiloides , Animales , Encéfalo/enzimología , Encéfalo/patología , Encéfalo/ultraestructura , Línea Celular , Humanos , Inflamación/patología , Trastornos de la Memoria/enzimología , Trastornos de la Memoria/patología , Trastornos de la Memoria/prevención & control , Ratones , Ratones Endogámicos C57BL , Presenilina-1 , Procesamiento Proteico-Postraduccional , Proteolisis , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores
2.
Curr Alzheimer Res ; 10(5): 524-31, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23036020

RESUMEN

The remarkable potentiality of bone marrow-derived mesenchymal stem cells (BM-MSCs) after transplantation to models of neurological disease and injury has been described. We have previously published data confirming the influence of BM-MSCs on ß-amyloid (Aß) deposition in an Alzheimer's disease (AD) mouse model. However, therapeutic approaches in neurological diseases such as AD, including those for BM-MSCs, are increasingly centered on the potential for prophylactic therapy in pro-dromal states where the underlying cause of the disease is apparent but functional deficits are not. In order to investigate whether BM-MSCs could have a beneficial effect in high-risk pre-dementia AD individuals, we treated young AD mice, at an age at which they display neuropathological, but not cognitive features of AD. Following a single intra-cerebral injection of BM-MSCs, interestingly, we found a significant decrease in the cerebral Aß deposition compared with controls treated with PBS that was sustained up to 2 months post-injection. Expression of dynamin 1 and Synapsin 1, key pre-synaptic proteins associated with synaptic transmission, which are typically decreased in brains of AD patients, were considerably enhanced in the brains of AD mice treated with BM-MSCs and this response was sustained beyond 2 months. These data demonstrate that BM-MSCs produce an acute reduction in Aß deposits and facilitate changes in key proteins required for synaptic transmission. These findings suggest that BM-MSC transplantation warrants further investigation as a potential therapy for early intervention in pro-dromal AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/cirugía , Péptidos beta-Amiloides/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Transmisión Sináptica/fisiología , Factores de Edad , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/fisiología , Humanos , Masculino , Aprendizaje por Laberinto , Células Madre Mesenquimatosas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteína Básica de Mielina/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo
3.
Neurobiol Aging ; 33(3): 588-602, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20471717

RESUMEN

Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) have a potential therapeutic role in the treatment of neurological disorders, but their current clinical usage and mechanism of action has yet to be ascertained in Alzheimer's disease (AD). Here we report that hUCB-MSC transplantation into amyloid precursor protein (APP) and presenilin1 (PS1) double-transgenic mice significantly improved spatial learning and memory decline. Furthermore, amyloid-ß peptide (Aß) deposition, ß-secretase 1 (BACE-1) levels, and tau hyperphosphorylation were dramatically reduced in hUCB-MSC transplanted APP/PS1 mice. Interestingly, these effects were associated with reversal of disease-associated microglial neuroinflammation, as evidenced by decreased microglia-induced proinflammatory cytokines, elevated alternatively activated microglia, and increased anti-inflammatory cytokines. These findings lead us to suggest that hUCB-MSC produced their sustained neuroprotective effect by inducing a feed-forward loop involving alternative activation of microglial neuroinflammation, thereby ameliorating disease pathophysiology and reversing the cognitive decline associated with Aß deposition in AD mice.


Asunto(s)
Enfermedad de Alzheimer/cirugía , Sangre Fetal/trasplante , Trasplante de Células Madre Mesenquimatosas/métodos , Degeneración Nerviosa/cirugía , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Modelos Animales de Enfermedad , Humanos , Inflamación/patología , Inflamación/fisiopatología , Inflamación/cirugía , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/patología , Ratones , Ratones Transgénicos , Microglía/citología , Microglía/patología , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología
4.
Arch Neurol ; 67(11): 1399-402, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21060018

RESUMEN

BACKGROUND: Mitochondrial diseases are characterized by wide phenotypic and genetic variability, but presentations in adults with akinetic rigidity and hyperkinetic movement disorders are rare. OBJECTIVES: To describe clinically a subject with progressive neurodegeneration characterized by psychosis, dementia, and akinesia-rigidity, and to associate this phenotype with a novel mitochondrial transfer RNA(Phe) (tRNA(Phe)) (MTTF) mutation. DESIGN, SETTING, AND PATIENT: Case description and detailed laboratory investigations of a 57-year-old woman at a university teaching hospital and a specialist mitochondrial diagnostic laboratory. RESULTS: Histopathological findings indicated that an underlying mitochondrial abnormality was responsible for the subject's progressive neurological disorder, with mitochondrial genome sequencing revealing a novel m.586G>A MTTF mutation. CONCLUSIONS: The clinical phenotypes associated with mitochondrial disorders may include akinesia-rigidity and psychosis. Our findings further broaden the spectrum of neurological disease associated with mitochondrial tRNA(Phe) mutations.


Asunto(s)
Demencia/genética , Enfermedades Mitocondriales/genética , Rigidez Muscular/genética , Mutación , Enfermedades Neurodegenerativas/genética , ARN de Transferencia/genética , Atrofia/genética , Atrofia/patología , Atrofia/fisiopatología , Encéfalo/patología , Encéfalo/fisiopatología , Demencia/patología , Demencia/fisiopatología , Progresión de la Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/fisiopatología , Rigidez Muscular/patología , Rigidez Muscular/fisiopatología , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Pruebas Neuropsicológicas , Fenilalanina/genética
5.
Neurosci Lett ; 481(1): 30-5, 2010 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-20600610

RESUMEN

The neuropathological hallmarks of Alzheimer's disease (AD) include the presence of extracellular amyloid-beta peptide (Abeta) in the form of amyloid plaques in the brain parenchyma and neuronal loss. The mechanism associated with neuronal death by amyloid plaques is unclear but oxidative stress and glial activation has been implicated. Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) are being scrutinized as a potential therapeutic tool to prevent various neurodegenerative diseases including AD. However, the therapeutic impact of hUCB-MSCs in AD has not yet been reported. Here we undertook in vitro work to examine the potential impact of hUCB-MSCs treatment on neuronal loss using a paradigm of cultured hippocampal neurons treated with Abeta. We confirmed that hUCB-MSCs co-culture reduced the hippocampal apoptosis induced by Abeta treatment. Moreover, in an acute AD mouse model to directly test the efficacy of hUCB-MSCs treatment on AD-related cognitive and neuropathological outcomes, we demonstrated that markers of glial activation, oxidative stress and apoptosis levels were decreased in AD mouse brain. Interestingly, hUCB-MSCs treated AD mice demonstrated cognitive rescue with restoration of learning/memory function. These data suggest that hUCB-MSCs warrant further investigation as a potential therapeutic agent in AD.


Asunto(s)
Enfermedad de Alzheimer/cirugía , Apoptosis/efectos de los fármacos , Sangre Fetal/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Neuronas/patología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/toxicidad , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo/métodos , Modelos Animales de Enfermedad , Embrión de Mamíferos , Feto , Hipocampo/citología , Humanos , Etiquetado Corte-Fin in Situ/métodos , Indoles , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos
6.
Cell Tissue Res ; 340(2): 357-69, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20238127

RESUMEN

Adult stem cells offer special therapeutic prospects because they can be isolated for autologous transplantation, expanded ex vivo, and differentiated into various cell types. We previously reported that bone marrow-derived mesenchymal stem cells improve neurological deficits in neurodegenerative disease animal models. However, the efficacy of adipose tissue-derived stem cells (ADSCs) transplantation in similar models remains unknown. Herein, we demonstrate that ADSCs, when transplanted into Niemann-Pick disease type C (NP-C) mouse cerebellum, elicit rescue of Purkinje neurons and restoration of motor coordination together with alleviation of inflammatory responses as verified by immunohistochemistry and real-time PCR using glial fibrillary acidic protein (GFAP), F4/80, IL-1 beta, IL-6, and TNF-alpha. Most importantly, ADSCs enhance electrically active Purkinje neurons with functional synaptic formation after transplantation in NP-C disease model mice. This report demonstrates for the first time that ADSCs can rescue imperiled Purkinje neurons and alleviate the inflammatory response in NP-C disease model mice, thereby signifying the therapeutic potential of ADSCs for neurodegenerative diseases.


Asunto(s)
Tejido Adiposo/citología , Inflamación/prevención & control , Enfermedad de Niemann-Pick Tipo C/patología , Enfermedad de Niemann-Pick Tipo C/terapia , Células de Purkinje/patología , Trasplante de Células Madre , Células Madre/citología , Animales , Supervivencia Celular , Cerebelo/patología , Cerebelo/fisiopatología , Colesterol/metabolismo , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Citometría de Flujo , Inflamación/patología , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Neuroglía/metabolismo , Neuroglía/patología , Enfermedad de Niemann-Pick Tipo C/fisiopatología , Células de Purkinje/metabolismo , Esfingomielinas/metabolismo
7.
Stem Cells ; 28(2): 329-43, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20014009

RESUMEN

Alzheimer's disease (AD) is characterized by the deposition of amyloid-beta peptide (Abeta) and the formation of neurofibrillary tangles. Transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) has been suggested as a potential therapeutic approach to prevent various neurodegenerative disorders, including AD. However, the actual therapeutic impact of BM-MSCs and their mechanism of action in AD have not yet been ascertained. The aim of this study was therefore to evaluate the therapeutic effect of BM-MSC transplantation on the neuropathology and memory deficits in amyloid precursor protein (APP) and presenilin one (PS1) double-transgenic mice. Here we show that intracerebral transplantation of BM-MSCs into APP/PS1 mice significantly reduced amyloid beta-peptide (Abeta) deposition. Interestingly, these effects were associated with restoration of defective microglial function, as evidenced by increased Abeta-degrading factors, decreased inflammatory responses, and elevation of alternatively activated microglial markers. Furthermore, APP/PS1 mice treated with BM-MSCs had decreased tau hyperphosphorylation and improved cognitive function. In conclusion, BM-MSCs can modulate immune/inflammatory responses in AD mice, ameliorate their pathophysiology, and improve the cognitive decline associated with Abeta deposits. These results demonstrate that BM-MSCs are a potential new therapeutic agent for AD.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Células de la Médula Ósea/citología , Trastornos de la Memoria/inmunología , Trastornos de la Memoria/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/genética , Animales , Western Blotting , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Aprendizaje por Laberinto , Trastornos de la Memoria/etiología , Ratones , Ratones Transgénicos , Presenilina-1/genética
8.
Stem Cells ; 25(5): 1307-16, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17470534

RESUMEN

Recent studies have shown that bone marrow-derived MSCs (BM-MSCs) improve neurological deficits when transplanted into animal models of neurological disorders. However, the precise mechanism by which this occurs remains unknown. Herein we demonstrate that BM-MSCs are able to promote neuronal networks with functional synaptic transmission after transplantation into Niemann-Pick disease type C (NP-C) mouse cerebellum. To address the mechanism by which this occurs, we used gene microarray, whole-cell patch-clamp recordings, and immunohistochemistry to evaluate expression of neurotransmitter receptors on Purkinje neurons in the NP-C cerebellum. Gene microarray analysis revealed upregulation of genes involved in both excitatory and inhibitory neurotransmission encoding subunits of the ionotropic glutamate receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA) GluR4 and GABA(A) receptor beta2. We also demonstrated that BM-MSCs, when originated by fusion-like events with existing Purkinje neurons, develop into electrically active Purkinje neurons with functional synaptic formation. This study provides the first in vivo evidence that upregulation of neurotransmitter receptors may contribute to synapse formation via cell fusion-like processes after BM-MSC transplantation into mice with neurodegenerative disease. Disclosure of potential conflicts of interest is found at the end of this article.


Asunto(s)
Células de la Médula Ósea/citología , Trasplante de Células Madre Mesenquimatosas , Degeneración Nerviosa/patología , Degeneración Nerviosa/terapia , Red Nerviosa/metabolismo , Transmisión Sináptica , Animales , Supervivencia Celular , Colesterol/metabolismo , Electrofisiología , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Mesenquimatosas/citología , Ratones , Células 3T3 NIH , Neurotransmisores/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Células de Purkinje/patología , Esfingomielinas/metabolismo , Transmisión Sináptica/genética
9.
J Clin Invest ; 109(9): 1183-91, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11994407

RESUMEN

Types A and B Niemann-Pick disease (NPD) are lysosomal storage disorders resulting from loss of acid sphingomyelinase (ASM) activity. We have used a knockout mouse model of NPD (ASMKO mice) to evaluate the effects of direct intracerebral transplantation of bone marrow-derived mesenchymal stem cells (MSCs) on the progression of neurological disease in this disorder. MSCs were transduced with a retroviral vector to overexpress ASM and were injected into the hippocampus and cerebellum of 3-week-old ASMKO pups. Transplanted cells migrated away from the injection sites and survived at least 6 months after transplantation. Seven of 8 treated mice, but none of the untreated controls, survived for > or = 7 months after transplant. Survival times were greater in sex-matched than in sex-mismatched transplants. Transplantation significantly delayed the Purkinje cell loss that is characteristic of NPD, although the protective effect declined with distance from the injection site. Overall ASM activity in brain homogenates was low, but surviving Purkinje cells contained the retrovirally expressed human enzyme, and transplanted animals showed a reduction in cerebral sphingomyelin. These results reveal the potential of treating neurodegenerative lysosomal storage disorders by intracerebral transplantation of bone marrow-derived MSCs.


Asunto(s)
Cerebelo/metabolismo , Trasplante de Células Madre Hematopoyéticas , Hipocampo/metabolismo , Mesodermo/citología , Enfermedades de Niemann-Pick/terapia , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Conducta Animal , Peso Corporal , Cerebelo/citología , Cerebelo/enzimología , Modelos Animales de Enfermedad , Femenino , Hipocampo/citología , Hipocampo/enzimología , Humanos , Esperanza de Vida , Masculino , Mesodermo/enzimología , Ratones , Ratones Noqueados , Ratones Transgénicos , Enfermedades de Niemann-Pick/genética , Enfermedades de Niemann-Pick/metabolismo , Enfermedades de Niemann-Pick/patología , Células de Purkinje/metabolismo , Esfingomielina Fosfodiesterasa/deficiencia , Esfingomielina Fosfodiesterasa/genética , Esfingomielinas/metabolismo , Tasa de Supervivencia , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...