Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Bioprint ; 8(3): 586, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105128

RESUMEN

Additive manufacturing (AM) technologies have disrupted many supply chains by making new designs and functionalities possible. The opportunity to realize complex customized structures has led to significant interest within healthcare; however, full utilization critically requires the alignment of the whole supply chain. To offer insights into this process, a survey was conducted to understand the views of different medical AM stakeholders. The results highlighted an agreement between academics, designers, manufacturers, and medical experts, that personalization and design control are the main benefits of AM. Interestingly, surface finish was consistently identified as an obstacle. Nevertheless, there was a degree of acceptance that post-processing was necessary to achieve appropriate quality control. Recommendations were made for extending the use of in situ process monitoring systems to support improved reproducibility. Variations in the future vision of AM were highlighted between stakeholder groups and areas of interest for development noted for each stakeholder. Collectively, this survey indicates that medical stakeholders agree on the capabilities of AM but have different priorities for its implementation and progression. This highlights a degree of disconnection among the supply chain at a ground level; thus, collaboration on AM specific standards and enhancement of communication between stakeholders from project inception is recommended.

2.
ACS Biomater Sci Eng ; 8(10): 4311-4326, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36127820

RESUMEN

Additive manufacturing (AM) has emerged as a disruptive technique within healthcare because of its ability to provide personalized devices; however, printed metal parts still present surface and microstructural defects, which may compromise mechanical and biological interactions. This has made physical and/or chemical postprocessing techniques essential for metal AM devices, although limited fundamental knowledge is available on how alterations in physicochemical properties influence AM biological outcomes. For this purpose, herein, powder bed fusion Ti-6Al-4V samples were postprocessed with three industrially relevant techniques: polishing, passivation, and vibratory finishing. These surfaces were thoroughly characterized in terms of roughness, chemistry, wettability, surface free energy, and surface ζ-potential. A significant increase in Staphylococcus epidermidis colonization was observed on both polished and passivated samples, which was linked to high surface free energy donor γ- values in the acid-base, γAB component. Early osteoblast attachment and proliferation (24 h) were not influenced by these properties, although increased mineralization was observed for both these samples. In contrast, osteoblast differentiation on stainless steel was driven by a combination of roughness and chemistry. Collectively, this study highlights that surface free energy is a key driver between AM surfaces and cell interactions. In particular, while low acid-base components resulted in a desired reduction in S. epidermidis colonization, this was followed by reduced mineralization. Thus, while surface free energy can be used as a guide to AM device development, optimization of bacterial and mammalian cell interactions should be attained through a combination of different postprocessing techniques.


Asunto(s)
Aleaciones , Acero Inoxidable , Animales , Mamíferos , Polvos , Titanio/química
3.
Sci Rep ; 11(1): 21449, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728650

RESUMEN

The World Health Organisation has called for a 40% increase in personal protective equipment manufacturing worldwide, recognising that frontline workers need effective protection during the COVID-19 pandemic. Current devices suffer from high fit-failure rates leaving significant proportions of users exposed to risk of viral infection. Driven by non-contact, portable, and widely available 3D scanning technologies, a workflow is presented whereby a user's face is rapidly categorised using relevant facial parameters. Device design is then directed down either a semi-customised or fully-customised route. Semi-customised designs use the extracted eye-to-chin distance to categorise users in to pre-determined size brackets established via a cohort of 200 participants encompassing 87.5% of the cohort. The user's nasal profile is approximated to a Gaussian curve to further refine the selection in to one of three subsets. Flexible silicone provides the facial interface accommodating minor mismatches between true nasal profile and the approximation, maintaining a good seal in this challenging region. Critically, users with outlying facial parameters are flagged for the fully-customised route whereby the silicone interface is mapped to 3D scan data. These two approaches allow for large scale manufacture of a limited number of design variations, currently nine through the semi-customised approach, whilst ensuring effective device fit. Furthermore, labour-intensive fully-customised designs are targeted as those users who will most greatly benefit. By encompassing both approaches, the presented workflow balances manufacturing scale-up feasibility with the diverse range of users to provide well-fitting devices as widely as possible. Novel flow visualisation on a model face is presented alongside qualitative fit-testing of prototype devices to support the workflow methodology.


Asunto(s)
Cara/fisiología , Equipo de Protección Personal , Fotogrametría/métodos , COVID-19/prevención & control , COVID-19/virología , Diseño Asistido por Computadora , Diseño de Equipo , Cara/anatomía & histología , Humanos , Impresión Tridimensional , SARS-CoV-2/aislamiento & purificación
4.
Micromachines (Basel) ; 11(5)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408485

RESUMEN

The study on CM247LC used the traditional approach for Near-Netshape Hot Isostatic Pressing (NNSHIP) with sacrificial low carbon steel tooling, which was built using Selective Laser Melting (SLM), to produce a shaped CM247LC blisk. The assessment of the microstructure focused on both the exterior components in order to determine the depth of the Fe-diffusion layer and on the interior microstructure. Samples were extracted from the Hot Isostatic Pressed (HIPped) components for tensile testing at both room and elevated temperatures. The components were scanned to assess the geometrical shrinkages due to Hot Isostatic Pressing (HIPping). An oversized blisk was also produced based on the measurements as a demonstrator component. In addition, a further study was carried out on a novel idea that used a solid IN718 disk in the centre of the blisk to create a multi-material component.

5.
Acta Biomater ; 107: 338-348, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32119921

RESUMEN

Magnetic Resonance Imaging (MRI) is critical in diagnosing post-operative complications following implant surgery and imaging anatomy adjacent to implants. Increasing field strengths and use of gradient-echo sequences have highlighted difficulties from susceptibility artefacts in scan data. Artefacts manifest around metal implants, including those made from titanium alloys, making detection of complications (e.g. bleeding, infection) difficult and hindering imaging of surrounding structures such as the brain or inner ear. Existing research focusses on post-processing and unorthodox scan sequences to better capture data around these devices. This study proposes a complementary up-stream design approach using lightweight structures produced via additive manufacturing (AM). Strategic implant mass reduction presents a potential tool in managing artefacts. Uniform specimens of Ti-6Al-4V structures, including lattices, were produced using the AM process, selective laser melting, with various unit cell designs and relative densities (3.1%-96.7%). Samples, submerged in water, were imaged in a 3T MRI system using clinically relevant sequences. Artefacts were quantified by image analysis revealing a strong linear relationship (RR2 = 0.99) between severity and relative sample density. Likewise, distortion due to slice selection errors showed a squared relationship (RR2 = 0.92) with sample density. Unique artefact features were identified surrounding honeycomb samples suggesting a complex relationship exists for larger unit cells. To demonstrate clinical utility, a honeycomb design was applied to a representative cranioplasty. Analysis revealed 10% artefact reduction compared to traditional solid material illustrating the feasibility of this approach. This study provides a basis to strategically design implants to reduce MRI artefacts and improve post-operative diagnosis capability. STATEMENT OF SIGNIFICANCE: MRI susceptibility artefacts surrounding metal implants present a clinical challenge for the diagnosis of post-operative complications relating to the implant itself or underlying anatomy. In this study for the first time we demonstrate that additive manufacturing may be exploited to create lattice structures that predictably reduce MRI image artefact severity surrounding titanium alloy implants. Specifically, a direct correlation of artefact severity, both total signal loss and distortion, with the relative material density of these functionalised materials has been demonstrated within clinically relevant MRI sequences. This approach opens the door for strategic implant design, utilising this structurally functionalised material, that may improve post-operative patient outcomes and compliments existing efforts in this area which focus on data acquisition and post-processing methods.


Asunto(s)
Aleaciones/química , Artefactos , Imagen por Resonancia Magnética/métodos , Prótesis e Implantes , Aluminio/química , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador , Porosidad , Prueba de Estudio Conceptual , Prótesis e Implantes/ultraestructura , Programas Informáticos , Titanio/química , Vanadio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...